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Buckling failure analysis and numerical manifold method simulation for 
Malvern Hills slope  
 
WANG Qiu-sheng,  ZHANG Rui-tao,  ZHENG Hong 
The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China 

 

Abstract: Based on the energy equilibrium, the computational formula of critical buckling length of multi-layer rock slope is derived. 

Considering interlayer and cross joints, the numerical manifold method is used to simulate the buckling evolution process of Malvern 

hills slope in New Zealand, and the theoretical calculation and numerical simulation results are compared with the field measured 

data. The results show that numerical manifold method can accurately simulate slope buckling failure process by preforming 

interlayer and cross joints. The process of slope buckling deformation and instability failure can be divided into interlayer 

dislocation-slight bending, slope toe traction-sharp uplift and accelerated sliding-landslide formation. Under the long-term action of 

self-weight, the evolution of slope buckling from formation to failure mainly includes three stages: initial bending, sharp bending and 

landslide formation. The angle between cross joint and slope normal is defined as β. Among the four kinds of cross joints with the 

angle β of 0°, 15°, 30° and 45°, the slope with 45° cross joint is most prone to slipping and bending deformation, the degree of 

buckling is the largest, and the number of time steps of slipping and bending is the least. When β is in the range of 30°−45°, the 

numerical simulation results are in good agreement with the reality. 

Keywords: layered slope; buckling failure; numerical manifold method; cross joint 

 

1  Introduction 
Buckling is one of the typical failure modes of 

landslide. Under the long-term action of self-weight, 
the rock layers at the top of the slope slides and at the 
toe of the slope are blocked, resulting in the uplift 
deformation and failure of rock layers. Slope buckling 
is usually developed in the deep canyon, resulting in 
large-scale landslides and causing serious harm to the 
safety of human life and property, such as Lijiaxia 
landslide [1] in the upper reaches of the Yellow River, 
Bawangshan landslide [2] in Ertan Hydropower Station, 
Malvern Hills [3] in New Zealand, and Westfield open 
pit coal mine [4] in the United States. The study on the 
formation and failure mechanism of layered rock slope 
buckling can provide a reliable basis for the prevention 
and control of buckling landslide and is of great 
significance to the safety of human life and property. 

Sun [5] and Goodman [6] analyzed the slope buckling 
by using the pressure bar stability theory. Liu et al.[7], 
Zhu et al.[8] and Feng et al.[9] established a mechanical 
criterion of single-layer slope buckling failure by using 
the energy method based elastic plate and elastic-plastic 
plate theory. In addition, many scholars have studied 
the formation mechanism of slope buckling failure by 
employing physical and mechanical models[10−12]. 
However, due to the limitations of the test space, the 

physical model is different from the actual slope, and 
most of the model tests only consider the rock layer 
joints and do not consider the cross joints intersecting 
with the rock layer. 

With the development of computer technology, 
finite element method (FEM), discrete element method 
(DEM) and discontinuous deformation analysis (DDA) 
have been widely used in the analyses of slope buckling 
and instability. Pant et al.[13] and Adhikary et al.[14] 

studied the bending and buckling mechanism of foliated 
rock slope based on the large deformation Cosserat 
continuum model. Pereira et al.[15] and Silva et al.[16] 
simulated the buckling failure process of phyllite slope 
with finite element software Phase2 and studied the 
influence of structural plane stiffness, cohesion, and 
in-situ stress on the buckling failure mechanism of the 
slope. In the scheme of FEM, the slope is processed as 
a continuum body, and the stress and deformation 
before the buckling failure can be easily obtained. 
However, it is difficult to address the discontinuities 
such as cracks and the deformation after the structural 
failure. 

Tommasi et al.[17] used DEM and DDA methods to 
simulate the three-hinge buckling failure of Lavini di 
Marco slope, examined the influence of rock mass 
characteristics, slope geometry, and water pressure on 
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slope buckling, and concluded that the slope would be 
subject to buckling deformation under the conditions 
of high water pressure and large-scale small deflection. 
Tang et al. [12] employed DEM software to simulate 
the sliding and bending process of the layered slope. 
Combined with the physical model and theoretical 
calculation, they investigated the mutual restriction and 
influence among the dip angle, single layer thickness, 
critical slope length, and buckling depth, and proposed 
the geomechanical conditions, critical buckling state 
discrimination and early identification marks for the 
sliding and bending deformation of the layered slope. 
Based on discontinuity mechanics, the rock structure 
is processed as discrete blocks in DEM and DDA, and 
the blocks are connected by contact bounds. They are 
suitable for simulating the movement of blocks and the 
contact between discontinuities in the rock structure. 
However, no matter the size of the blocks, each block 
is taken as an element in the simulation. It is still 
difficult to simulate the deformation of discontinuous 
structures with defects and cracks. Consequently, it is 
difficult to obtain ideal results by employing the two 
methods for the actual slope buckling failure. 

The numerical manifold method is a new numerical 
method that integrates the continuous and discontinuous 
methods[18] and can be used to study the movement of 
rock slopes with continuous and discontinuous deformation. 
Although the numerical manifold method has been widely 
used to simulate structural failure and deformation [19−25], 
the research on the formation and failure process of 
multi-layer rock slopes by the numerical manifold 
method is seldom reported. Currently, most of the 
research on the influencing factors of slope buckling 
failure are the geometric dimensions such as slope 
length, slope angle and rock layer thickness, and less 
attention is paid to the cross joints of lateral structural 
planes of rock layers. In this paper, a formula for 
calculating the critical buckling length of multi-layer 
rock slope is derived based on the principle of energy 
method. Considering the interlayer and cross joints, 
the numerical manifold method is used to simulate the 
formation and failure process of Malvern Hills slope 
buckling, and the influence of cross joints of rock 
layers on slope buckling and failure is investigated. 

2  Theoretical calculation of critical 
buckling length 

It is assumed that there is a soft interlayer, 
namely a sliding surface between the rock layers. The 
rock layer slides and bends only along the sliding 
surface. The rock layer cannot be compressed during 
the sliding, and the rock layer below the sliding 

surface does not slide, as shown in Fig. 1. According 
to the literature[5−6], the rock layer in the bending 
section is simplified as a beam and analyzed with the 
pressure bar stability theory. The mechanical calculation 
model of the layered slope is shown in Fig. 2, where G 
is the gravity of the rock layer and F is the residual 
sliding force of the rock layer. Assuming that the slope 
length is L and the length of the buckling section is l0, 
then the length of sliding part is Ll0. The unit weight 
of rock layer is  , the single layer thickness is D, the 
number of layers is n, and the slope angle is θ， the 
cohesion between rock layers is c and the internal 
friction angle is φ. If the unit width of rock layer is 
taken, the residual force F can be expressed as 

    0 0sin cos tanF n d L l L l c          （1） 

 

 
Fig. 1  Bucking failure model of layered rock slope 

 

 

Fig. 2  Mechanical calculation model of slope 
 

Assuming that the deflection of each rock layer in 
the bending section is the same, and the maximum 
deflection is  , the deflection deformation curve of 
each rock layer can be expressed as 
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Ignoring the axial compression deformation of 
rock layer, the sliding displacement driven by the 
residual force F can be calculated with the following 
formula: 
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rock layer in the bending section is equal to the sum of 
the elastic energy stored in the bending section and the 
work done by the gravity component perpendicular to 
the slope of the rock layer in the bending section, 
which can be expressed as 

/ /F G G SW W W W                         （4） 

where FW  is the work done by the residual sliding 
force; / /GW  is the work done by the gravity component 
of the rock layer along the slope in the bending section; 

GW   is the work done by the gravity component of 
the rock layer perpendicular to the slope in the 
bending section; and SW  is the elastic energy stored 
in the bending section. The calculation formula is as 
follows: 

 

    
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Where E is the elastic modulus of rock; I is the inertia 
moment of single layer rock. 

Substituting Eqs. (5)−(8) into Eq. (4) gives 
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Performing the partial derivative on both sides of 
Eq. (9), the univariate cubic equation with respect to 
the critical buckling length l0 can be obtained: 

3 2
0 1 0 2 0l k l k                             （10） 
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                                       （11） 
where v is the Poisson's ratio of rock. 

For any layered slope with the given parameters 
listed above, the critical buckling length of the slope 

can be obtained by solving Eq. (10). The ratio of the 
critical buckling length l0 to the total length of the 
slope L is defined as the slope stability coefficient  : 

0l

L
                                    （12） 

That is, when 0 <  < 1, buckling failure will 
happen; and if  > 1, the slope is stable. 

3  Numerical simulation 

3.1 Local displacement and global displacement 
In the numerical manifold method, the physical 

element can be arbitrary polygon. The local displacement 
field of a physical element is approximated by a 
polynomial or analytic displacement function, and the 
global displacement approximation of the material is 
obtained by summing the weighted average values of 
local approximation of all physical elements. Assuming 
that the material is covered by m physical patches, the 
global displacement approximation can be expressed 
as 

1

( ) ( ) ( )
m

i i
i

U z z u z


                        （13） 

where z indicates arbitrary point in the material; 
( )i z  is the weight function of the i-th physical patch; 
( )iu z  is the local displacement approximation on the 

i-th physical patch. 
The three-node triangular element based mathematical 

cover is used to study the buckling failure of rock 
slope. Each manifold element is covered by three 
physical patches, and the weight function of each 
physical patch can be expressed in area coordinates: 

2
i i i

i i

a b x c y
L

A


 
                       （14） 

where (x, y) is the coordinate of any point in the 
element; A is the area of triangular element; ia , ib  
and ic  are the coefficients to be determined, i = 1, 2, 3. 

For the two-dimensional manifold method, each 
physical element or node displacement contains two 
unknowns, i.e., horizontal x-direction displacement 
and vertical y-direction displacement. According to the 
principle of minimum potential energy, the overall 
equilibrium equation of m physical elements can be 
obtained: 

1 1m m m m   K D F                         （15） 

where m mK  is the stiffness matrix; 1mD  is the 
node displacement vector; and 1mF  is the load vector. 
3.2 Large deformation and contact simulation 

The numerical manifold method adopts the block 
motion theory in DDA to simulate the large deformation 
movement problem. By applying and removing the 
spring on the contact boundary, the open and close 
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iteration is realized, so that there is no tension and 
embedding between the blocks in the movement 
process. There are three states at the boundary between 
blocks, namely, opening, locking, and sliding. By exerting 
normal and tangential springs, the boundary contact 
states open-to-lock and slide-to-lock can be realized, 
respectively. When sliding between boundaries, the 
friction force is applied to modify the stiffness matrix, 
and the calculated boundary contact force is added 
into the equilibrium force array and delivered to the 
next iteration [18]. 

Shi[18] put forward a strict contact detection method 
in DDA. By using this method, contact forms such as 
corner to edge, edge to edge, convex corner to convex 
corner, and convex corner to concave corner can be 
obtained. The connection of discontinuities is achieved 
by applying normal and tangential stiffness springs on 
the contact boundaries. The normal and tangential 
stiffness can be calculated as follows: 

1
n 2

El
K


                               （16） 

2

2 2


 
ElG l

K                          （17） 

where E  and G  are the elastic modulus and shear 
modulus of the material, respectively; 1  and 2 are 
contact stiffness enhancement coefficients, which can 
be determined according to trial calculation; and l is 
the length of the contact surface. 
3.3 Rock strength reduction 

The elastic modulus of rock is an important parameter 
for slope stability analysis. However, after long-term 
weathering, erosion, and other physical and chemical 
actions, the rock layer of the slope will be fractured, 
and its strength is smaller than that of the intact rock. 
Therefore, it is necessary to reduce the elastic modulus 
of the rock of slope in consideration of the geological 
strength index. According to Hoek-Diederichs model[26], 
the reduced elastic modulus can be estimated according 
to the following formula: 

 m

1 0.5
0.02

1 exp 60 15 GSI / 11

D
E E

D

    
      

  

                                       （18） 

where GSI is the geological strength index, which is 
divided by rock type; D is the factor reflecting the 
disturbance degree of rock mass, for the natural slope, 
0 is suggested. 

Tensile strength is an important index reflecting 
the physical and mechanical properties of rock. Reliable 
rock strength evaluation is of great significance to the 
stability analysis of layered rock slope. In addition, the 

rock classification and the rock disturbance degree 
also have an impact on its strength. Therefore, in order 
to obtain effective rock strength, Hoek-Brown criterion 
is adopted to estimate the tensile strength of slope 
rock[27−28]. The calculation formulas are as follows: 

 2c
tm b b 4

2
m m s


                      （19） 

b i

GSI 100
exp

28 14
m m

D

    
                   （20） 

GSI 100
exp

9 3
s

D

    
                       （21） 

where tm  is the tensile strength of rock; c  is the 
compressive strength of rock; im  is a material constant, 
which depends on the crystal structure and grain size 
of the rock; bm  and s  are predefined parameters. 

4  Case study 

4.1 Slope condition 
The buckling phenomenon of the natural slope and 

artificial slope is often found after buckling failure. It 
is difficult to measure the critical buckling length of 
the slope, which brings challenges to numerical simulation. 
Malvern Hills is an opencast coal mine located in 
Canterbury, inland New Zealand[3]. July 1, 2004, the 
rock layer of the slope slipped along the slope, and 
buckling failure occurred at the toe of the slope. From 
the damage site, the sliding trace at the slope top and 
the folded rock layer at the slope toe were clearly seen. 
The actual buckling length of the slope was estimated 
by the measured sliding displacement at the slope top, 
which can be compared with the numerical analysis. 
Therefore, this paper takes Malvern Hills as an example 
to study the failure mechanism of slope buckling. As 
shown in Fig. 3, the slope angle is about 42°, the slope 
height is 15 m, and the lateral extension is 85 m. The 
total thickness of the rock layer in the buckling section 
is about 2 m, and the unit weight is 22 kN/m3. The 
rock layer at the top of slope slides downward by 6.2 
m (the vertical displacement is about 4.2 m). The rock 
layer at the toe of the slope folds and forms a pile, 
covering the 355RL platform, of which the horizontal 
width is 5 m. The rock of the slope is mudstone, and 
the color is gray white and gray black. The average 
distance between the interlayer joints is about 0.2 m. 
There are also joints in the vertical direction of the 
rock layers, and the joints are separated by 3 cm wide 
argillaceous fissures[3]. According to literature[3, 27−29], 
the uniaxial compressive strength c , elastic modulus 
E, Poisson's ratio v, mechanical parameters of sliding 
surface, GSI, rock disturbance degree D, and rock 
material constant mi of the slope are shown in Table 1. 
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Fig. 3  Bucking failure characteristics of  

Malvern Hills slope[3] 
 

Table 1  Physical and mechanical parameters of slope rock 
and strata 

Material c /MPa E /GPa v  /(°) c /kPa GSI D mi

Rock/Rock  
layer 25 0.61 0.3 3−25 0 35 0.7 9 

 
4.2 Calculational model 

According to the actual conditions of the slope, 
during the buckling failure, only the 355RL platform 
at the slope toe has an obstruction effect on the sliding 
rock layers. The rock layers at 370RL platform and 
385RL platform at the upper end of the slope don’t 
slide and have no impact on the sliding rock layers in 
the buckling section. Therefore, during the modeling, 
only 355RL platform is considered. The two-dimensional 
calculation model established with O as the origin is 
shown in Fig. 4, where BCGH corresponds to a layered 
slope with a thickness of 2 m. The slope height is 15 m. 
The spacing for the joints parallel to the slope is 0.2 m, 
and 10 layers in total. The spacing for the joints 
perpendicular to the slope is 0.5 m. GH indicates a 
weak interlayer, and CD corresponds to 355RL platform. 
The GAFEDCH boundary is set as fixed constraint. P 
is the displacement monitoring point at the top of the 
slope, and K1−K6 are the displacement monitoring 
points at the buckling section. Rotate the vertical joint 
anticlockwise and change the angle between it and the 
normal vector of the slope, set the intersection angles 
as 0°, 15°, 30°, and 45°, respectively, as shown in Fig. 
5, and observe the formation and failure process of 
slope buckling under different intersection angles. 

The three-node triangular element is used for the 
numerical manifold cover. According to the rock 
strength reduction principle mentioned in the previous 
section, the elastic modulus Em of the slope rock is 
taken as 0.027 GPA, and the tensile strength is taken 
as 8 kPa, and the other parameters remain unchanged. 
The number of calculation time steps is set to 5 000, 
and the maximum displacement ratio in each step is 

0.001. The time step is set as 0.001 s. The dynamic 
coefficient is 1.0. The overrelaxation iteration coefficient 
is 1.8, and the contact spring stiffness is 0.027 GPa. 
Taking the vertical inclined joint  =0 ° as an example, 
the mathematical cover and physical cover are shown 
in Fig. 6. A total of 806 manifold elements are 
generated, and each manifold element is covered by 3 
physical patches. 
 

 
Fig. 4  Calculation model of Malvern Hills slope 

 

 
(a)  =15° joint         (b)  =30° joint       (c)  =45° joint 

Fig. 5  Schematic diagrams of different cross joints 

 

 
(a) Mathematical cover 

 
(b) Physical cover 

Fig. 6  Numerical manifold model 
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5  Simulation result and analysis 

5.1 Failure characteristics of slope buckling 
The failure characteristics of slope buckling under 

different cross joints are shown in Fig. 7. It can be 
seen from Fig. 7 that the dip angle   of the cross joint 
has a great influence on the buckling deformation of 
the slope. When the joint inclination   = 0°, the rock 
layers at the top of the slope will slide downward  

slightly, and the rock layers at the foot of the slope do 
not swell, and the slope tends to be stable. When the 
joint dip angle is 15°, there is no obvious deformation 
of the slope when the time step is 1 000, and when the 
time step is 3 000, there is a sliding displacement at the 
slope top and a slight deformation near the slope toe, 
and when the time step is 5 000, the sliding displacement 
at the slope top increases, but the slope still tends to be  

 

   
1 000 steps                                 3 000 steps                                  5 000 steps 

(a)  =0° cross joint 

   
1 000 steps                                   3 000 steps                                 5 000 steps 

(b)  =15° cross joint 

   
1 000 steps                                   3 000 steps                                  5 000 steps 

(c)  =30° cross joint 

   
1 000 steps                                    3 000 steps                                   5 000 steps 

(d)  =45° cross joint 

Fig. 7  Bucking failure characteristics of slopes with different cross joints  
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stable. When the joint dip angle is 30°, the rock layers 
at the top of the slope slide slightly at 1 000 steps. At   
3 000 steps, the rock layers at the top of the slope slide 
significantly, and the rock layers at the foot of the 
slope bend slightly. At 5 000 steps, the sliding displacement 
of the rock layers at the top of the slope increases, and 
the uplift deformation of the rock layers near the foot 
of the slope increases sharply, resulting in local 
delamination. When the joint dip angle is 45°, the rock 
layers at the slope top slide and near the slope toe slide 
slightly at 1 000 steps. At 3 000 steps, the rock layers 
at the slope top slide significantly and the differential 
dislocation appears, and the uplift deformation of the 
rock layers near the slope toe increases sharply. At    
5 000 steps, the rock layers in the bending section of 
the slope are seriously damaged, and landslide occurs, 
and finally, a deposit is formed at the foot of the slope. 
According to the above analysis, the characteristics of 
slope buckling deformation and instability failure can 
be divided into interlayer dislocation-slight bending, 
slope toe traction-sharp uplift and accelerated sliding- 
landslide formation. 
5.2 Slope displacement and critical buckling length 

Figures 8 and 9 show the vertical displacement 
contours of the slopes with different cross joints and 
the vertical displacement variation curves of monitoring 
point P at the slope top. As displayed in Figs. 8 and 9, 
when the dip angles of cross joint   are 0° and 15°, 
there is slight sliding at the top of the slope and no 
obvious uplift deformation of the rock layers near the 
slope toe. After sliding a certain distance at the slop 
top, the slope tends to be stable. When the dip angles 
of cross joint   are 30° and 45°, the sliding displacement 
at the slope top gradually increases with the increase 
of the time step. When   is 30°, the sliding speed of 
the slope is relatively slow, and the rock layers near 
the slope toe uplift obviously at 5 000 steps. When   
is 45 °, the sliding speed at the slope top is slow at the 
initial stage and starts to accelerate around 3 500 steps, 
and the slope has undergone severe deformation and 
gradually forms a landslide at 5 000 steps. Through 
the above analysis, it can be seen that when   is 45°, 
the bending deformation of the rock layers is the 
fastest, and the number of time steps of slipping and 
bending is the least. With the development of bending 
deformation layer by layer, the uplift degree of the 
rock layers near the slope toe reaches the maximum. 
Subsequently, the resistance of the rock layers below 
the highest position of the slope uplift to the upper 
rock layers gradually decreases, and the sliding speed 
at the slope top is accelerated, and finally, a landslide 
is formed. In addition, the critical buckling length of 
the slope can be estimated according to the displacement 

 

 
(a)  =0° vertical displacement contour 

 
(b)  =15° vertical displacement contour 

 

(c)  =30° vertical displacement contour 

 
(d)  =45°vertical displacement contour 

Fig. 8  Vertical displacement contours of buckling slopes 
with different cross joints 
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Fig. 9  Vertical displacements of monitoring point P at the 

top of slope with different cross joints 
 

contour. The range of the whole slope rock layers L 
can be divided into a buckling section l0 and a sliding 
section Ll0. The sliding displacement of each rock 
layer in the sliding section is equal, which indicates 
that the corresponding colors of the rock layers in the 
sliding section are the same or similar on the displacement 
contour. The coordinates of the start point M1 and the 
end point M2 of the sliding section can be obtained 
according to the displacement contour. The coordinates 
of the two points have been marked in Figs. 8(c) and 
8(d), then the length of the sliding section can be 
obtained, and then the critical buckling section length 
l0 can be obtained: 

   2 2

0 1 2 1 2l L x x y y                  （22） 

where (x1, y1) and (x2, y2) are M1 and M2 coordinates, 
respectively. 

Figure 10(a) shows the horizontal displacement 
variation curves of monitoring points in the buckling 
section. In the period of 0−3 500 steps, the horizontal 
displacement of each monitoring point gradually increases 
with the increase of the time step, but the growth rate 
is slow. After 3 500 steps, the growth rate of horizontal 
displacement of each monitoring point increases gradually, 
of which the displacements of monitoring points K3 
and K4 are the largest and the growth rates are the 
fastest. This indicates that the maximum position of 
slope bending and buckling uplift is between K3 and 
K4. Fig.10(b) shows the vertical displacement variation 
curves of the monitoring points in the buckling section. 
It is specified that the downward sliding is positive. It 
can be observed from Fig. 10(b) that when the time 
step is between 0 and 500, the monitoring points 
K1−K4 move downward slowly, and at 500 steps, the 
monitoring points K1−K4 start to move upward 
gradually, namely the rock layers start to generate uplift 
deformation, and the maximum uplift displacement is 
reached around 3 500 steps. The displacement value of 

the monitoring point K3 is the largest. Then the 
monitoring points K1−K4 start to move downward and 
accelerate, and the downward speed of K3 monitoring 
point is the fastest and the displacement value is the 
largest. On the contrary, monitoring points K5 and K6 
move downward with the increase of time step. Before 
step 3 500, the displacement of monitoring point K6 
increases slowly, and after step 3 500, it begins to move 
downward rapidly. The displacement of monitoring 
point K5 changes little from step 0 to step 4 000, and 
after step 4 000, it begins to move downward rapidly. 
To sum up, according to the horizontal and vertical 
displacement change laws of each monitoring point, it 
can be concluded that step 3 500 is the critical node of 
slope buckling failure, the corresponding rock layers 
reach the maximum degree of buckling, and the 
maximum uplift position is near monitoring point K3, 
which is about 0.75 m higher than the initial position. 
In combination with the displacement contours in Figs. 
8(c) and 8(d), it can also be confirmed that the location 
of the maximum slope buckling uplift is in the vicinity 
of monitoring point K3 (see Fig. 4 for the distribution 
of monitoring points K1−K6). 
 

 
(a) Horizontal displacement 

 
(b) Vertical displacement 

Fig. 10  Horizontal and vertical displacements of 
monitoring points in bucking section 
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6  Discussion 

Slope buckling is the result of long-term deformation 
evolution of rock layers under the action of self-weight, 
and the buckling failure is the gradual evolution process 
from buckling to landslide. Comparing the numerical 
simulation results (see Figs. 7 and 8) with the actual 
slope failure characteristics (see Fig. 3), it can be seen 
that in the range of 0°−45°, with the increase of the 
dip angle of cross joint, the better effect of buckling 
failure can be simulated by the numerical manifold 
method, and the simulated results of the slope buckling 
failure characteristics (Figs.7 (c) and 7 (d)) are consistent 
with the actual situation. When the dip angle of cross 
joint is between 0° and 1 °, the rock layers at the top of 
the slope slide slightly, but no obvious uplift deformation 
in the lower rock layers, and the slope tends to be 
stable. When the dip angle of cross joint is between 
30° and 45°, the rock layers at the slope top slide 
obviously, and the rock layers near the slope toe bend 
and uplift sharply, and then the failure develops layer 
by layer, and finally result in a landslide. 

According to the displacement variation curves 
(see Fig. 9) of the monitoring point P at the slope top 
and the failure characteristics of the slope buckling 
failure (see Fig.7), the evolution of slope buckling 
from formation to failure mainly includes three stages. 
Stage 1 is the initial bending stage, the rock layers 
move differentially along the dip direction under the 
action of gravity, and the slope top gradually accelerates 
to slide downward. There is no space for deformation 
near the slope toe, and the differential interlayer movement 
is blocked. The rock layers at the lower part of the 
slope uplift slightly toward the empty space. Stage 2 is 
the sharp bending stage. With the continuous action of 
gravity, the deformation depth and degree of the rock 
layers in the bending section increase sharply, and the 
bending uplift continues developing layer by layer 
until the rock layers are violently bent to the maximum 
uplift height. Stage 3 is the landslide formation stage. 
After the buckling of the rock layers in the bending 
section reaches the maximum height of the buckling, 
the rock layers below the maximum buckling position 
begin to collapse, and the resistance of the rock layers 
above the maximum buckling position gradually decreases, 
and the sliding speed of the rock layers at the slope top 
increase fast to form a landslide. The vertical downward 
sliding displacement at the slope top is about 4.6 m, 
which is close to the vertical downward sliding dis- 
placement of 4.2 m measured in-situ. 

According to theoretical calculation, numerical 
simulation, and field monitoring, the critical buckling 
length and stability coefficient of the slope are shown 
in Table 2. From the qualitative analysis, the stability 

coefficients obtained by the theoretical formulas and 
the numerical simulation are less than 1, which means 
that the two methods can predicate the buckling failure 
of the slop. From the quantitative analysis, when the 
dip angles of cross joint are 30° and 45°, the critical 
buckling lengths of the slope obtained by numerical 
simulation are 13.00 and 11.88 m, respectively. The 
numerical results are very close to the actual slope 
buckling length of 12.00 m, while the critical buckling 
length of the slope obtained by theoretical calculation 
is 9.42 m, which is slightly less than the actual value. 
It implies that the results obtained by numerical manifold 
simulation are more accurate and the theoretical 
calculation result is slightly conservative. This is 
because the theoretical formulas are established based 
on some assumptions, and the slope model is con- 
siderably simplified. The rock layers are regarded as 
ideal elastic continuums, and the influence of cross 
joints of rock layers is not considered. In the numerical 
manifold method simulation, interlayer and cross 
joints are set, and the strength of rock is reduced by 
considering the geological strength index. Therefore, 
the numerical simulation calculation model is more 
consistent with the actual condition, and the results are 
also similar. In addition, from the data in Table 2, it 
can also be concluded that the slope buckling failure 
occurs in the middle and lower parts of the rock layers, 
which is also in line with the actual situation. 

 
Table 2  Critical bucking length and stability factor of slope 

Critical buckling length /m Stability coefficient  

Theoretical 
value

Numerical 
solution Actual 

value
Theoretical 

value 

Numerical 
solution Actual 

value
 = 30°  = 45°  = 30°  =45°

9.42 13.00 11.88 12.00 0.42 0.58 0.53 0.54

 

7  Conclusion 

(1) By presetting interlayer and cross joints, the 
numerical manifold method can accurately simulate 
the buckling failure process of layered slope. The 
buckling deformation and instability failure mode of 
slope can be shown as: interlayer dislocation − slight 
bending, slope toe traction−sharp uplift, and accelerated 
sliding–landslide formation. The formation of landslides 
is the product of extreme buckling deformation of 
slopes. 

(2) Under the long-term action of self-weight, the 
evolution of slope buckling from formation to failure 
mainly includes three stages: initial bending stage, 
sharp bending stage, and landslide formation stage. 

(3) Among the four cross joints with dip angles   
of 0°, 15°, 30° and 45°, the slope with 45° cross joint 
is most prone to slipping and bending deformation, the 
degree of buckling is the largest, and the number of 
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time steps of slipping and bending is the least. 
(4) When the dip angle of cross joint is between 0° − 

15°, the rock layers at the top of the slope slide slightly, 
but there is no obvious uplift deformation at the lower 
rock layers. When the dip angle of cross joint is 
between 30°−45°, prominent buckling deformation of 
rock layers will occur, and the deformation and failure 
characteristics can observed to be aligned with the 
actual situation. 
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