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Abstract: The conventional geological prediction method of advanced drilling usually takes the change rate of one specific drilling 

parameter as the main basis for stratum identification. The rock breaking of drill bit is a complicated mechanical process. Stratum 

identification with single drilling parameter results in great uncertainty. Thus the combined effect of multiple parameters in drilling 

process should be considered. Firstly, the advanced drilling data were preprocessed by SPSS, including standardization, frequency 

distribution analysis and sensitivity analysis, to select the key drilling parameters that are sensitive to stratum changes. Secondly, 

based on the principles of energy conservation, binary disordered logistic regression analysis and multi-parameter variability analysis, 

three comprehensive identification indices including rock breaking energy, logistic regression probability and stratum hardness were 

established respectively. Finally, the stratum identification model was established by probability classification method based on 

Bayesian principle, the model parameters were determined by ROC analysis method, and the stratum identification based on multiple 

drilling parameters and probability classification method was realized. Taking the tunnel project with complex geological conditions 

as an example, the application of the proposed stratum identification method is introduced. The results show that three comprehensive 

indices perform well in cross-hole stratum identification, and the identification accuracy exceeds 80%. The rock breaking energy and 

the logistic regression probability are suitable for the cross-hole stratum identification with short distance, and the average 

identification accuracies are 86.3% and 84.1%, respectively. The logistic regression probability index has strong identification 

capability for the weak interlayer, and the identification accuracy reaches 94.2%. The stratum hardness index is suitable for the 

cross-hole stratum identification with long distance, and the maximum identification accuracy of limestone is 93.2%. 

Keywords: advanced drilling; rock breaking energy; logistic regression probability; stratum hardness index; probability classification; 

stratum identification 

 

1  Introduction 

The advanced geological prediction during tunnel 
construction can identify the basic geological structures 
and the properties of adverse geological bodies in 
front of the tunnel face, and provide guidance for the 
prevention of potential geological disasters in the tunnel. 
According to the working principle, the advanced 
geological prediction can be classified into two categories, 
i.e. geological analysis method and geophysical method. 
Geophysical method infers the geological condition by 
detecting the change in the physical properties of 
surrounding rocks, but the conclusion is usually not 
quantitative and unique. However, the advanced drilling 
which belongs to the geological analysis method obtains 
the surrounding rock condition by direct exposure, and 
the result is reliable.  

Since the 1980s, with the development of science 
and technology, multi-functional drilling rigs capable 
of advanced geological prediction have been developed. 
This type of drilling rig possesses a variety of sensors, 
which can record and analyze the working data of the 
drilling rig in real-time to determine the hardness of 
rock, the integrity of the rock mass, and the distribution 
positions of faults and holes in the survey area. The 
advanced drilling and prospecting technology based 
on multi-functional drilling rigs has the features of 
quick disassembly and assembly, short working hours 
and reliable data sources, and it has gradually gained 
considerable attention in the industry. In 2018, the 
notice of the General Office of the Ministry of Transport 
of China on carrying out special rectification actions 
for the quality and safety of highway tunnel construction 
projects clearly stipulated that advanced geological 
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prediction should be carried out during the tunnel 
construction in adverse geological conditions. 

The predicting procedure, predicting principle, and 
data interpretation standard of the geological prediction 
based on advanced drilling have always been the focus 
of scholars and engineers[1]. In terms of predicting 
methods, Li et al.[2], Shu et al.[3] and Zhou et al.[4] 
provided hole arrangement suggestions based on engi- 
neering experience and geophysical approaches. In the 
analysis of the rock breaking mechanism based on the 
energy method and mechanical balance, He et al.[5] 
realized the quantitative prediction of the surrounding 
rock grade in front of the tunnel face based on the 
concept of drilling energy. Li et al.[6] proposed the 
concept of power-to-speed ratio, considering the synergistic 
effect of four drilling parameters including drilling 
speed, rotation speed, thrust and torque on rock breaking. 
Nong[7] employed the wavelet analysis method to 
transform and analyze the power-to-speed ratio. Compared 
with core data and TSP prediction, it presents higher 
accuracy in stratum identification. Li et al.[8] and Wang 
et al.[9−11] developed a large-scale indoor drilling test 
platform. Based on the rock breaking mechanism of 
the PDC bit, the quantitative analysis model between 
the drilling parameters and the uniaxial compressive 
strength and shear strength of rock was established 
with the energy analysis method. Tian et al.[12] focused 
on the surface properties of surrounding rocks and 
established a quantitative relationship between the 
parameters and the property changes of the surrounding 
rocks. The mechanism analysis requires a large number 
of assumptions, however, the in-situ working conditions 
of advanced drilling are complex and changeable, and 
too many assumptions make the result deviate from 
the actual situation of the project. Numerous scholars 
tried to use probability and mathematical statistics to 
compromise the mechanism analysis. For example, 
Dong et al.[13] established the equation of DPM drilling 
rate and rock core RBI value in sandstone formation 
using linear regression. Xu[14] classified the lithology 
and structure of surrounding rocks based on the 
wavelet theory. Yue et al.[15−16] established a time- 
series analysis method for spatiotemporal data during 
the drilling process and concluded that the drilling 
speed is the same in the same stratum. Zhao[17] analyzed 
the correlation between the drilling parameters and the 
condition of the tunnel face, and pointed out that the 
drilling speed can be used to identify the rock 
hardness and the distribution of joints and fractures. 
Qin et al.[18] identified the rock mass by analyzing the 
vibration spectrum and acoustic spectrum during the 
drilling process. Kahraman et al.[19] established the 
regression relationship of the drilling speed with rock 
mass density, uniaxial compressive strength and rock 

mass quality index through statistical analysis. Qi[20] 
investigated the distribution features and fractal 
dimension of the test data during drilling and found 
that the local prediction result of the lithologic change 
of surrounding rocks by advanced drilling is more 
accurate than conventional TSP and GPR techniques. 
Fang et al.[21] established a neural network-based stratum 
classification method and pointed out that considering 
the standard deviation of drilling parameters can improve 
the accuracy of stratum classification. Currently, the 
research of probability and mathematical statistics on 
stratum identification based on drilling parameters has 
following deficiencies: (i) usually, only the effect of a 
single drilling parameter is considered[22]; (ii) geological 
predictions obtain mostly qualitative conclusions and 
lack quantitative analysis; (iii) the peak value is usually 
considered as a noise, and the denoising process loses 
the stratum information at the corresponding depth. 

Therefore, the stratum identification based on 
advanced drilling should comprehensively consider 
multiple drilling parameters, and can predict the stratum 
conditions of other drill holes in the site. Meanwhile, 
on the basis of ensuring the integrity of the data, 
multiple drilling parameters should be considered for 
stratum identification. Due to the spatial variability 
and the complexity of the rock breaking process of the 
drill bit, the theoretical analysis combined with the 
mathematical statistics is used to perform the stratum 
identification. 

In this paper, the advanced drilling data are 
standardized, and the key drilling parameters sensitive 
to stratum changes are filtered out with the frequency 
distribution analysis and correlation analysis mode in 
the statistical product and service solutions (SPSS) 
software. Based on the principles of energy conservation, 
binary disordered logistic regression analysis and 
multi-parameter variability analysis, three comprehensive 
stratum identification indices, including rock breaking 
energy, logistic regression probability and stratum hardness 
index, are established. The probability classification 
method based on the Bayesian principle is used to 
establish the stratum identification model, and the 
receiver operating characteristic (ROC) curve analysis 
method is used to determine the model parameters. 
Taking the advanced drilling of Jiudingshan Tunnel of 
Chu-Da Expressway as an example, the stratum 
identification method based on multiple drilling para- 
meters and probability classification method is 
introduced. The prediction results show that the three 
comprehensive stratum identification indices perform 
well for cross-hole stratum identification, and have 
certain advantages compared with the conventional 
geological prediction method of advanced drilling 
during tunnel construction, which provide a basis for 
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the digital, efficient, and accurate geological survey of 
future tunnel engineering. 

2  Multiple drilling parameters based  
stratum identification indices 

2.1 Sensitivity analysis of drilling parameters 
The geological prediction of advanced drilling 

usually takes the changing rate of drilling speed as the 
basis for stratum classification. A series of engineering 
examples has proved that the drilling speed is sensitive 
to the stratum change, which reflects the difficulty of 
the drill bit cutting into the rock mass, and the drilling 
speed is fast in the rock or soil layer with poor 
integrity or low strength. The breaking of the weak 
rock layer mainly depends on the bit pressure, and the 
drilling in the soil layer mainly depends on the shearing 
of the drill teeth. Consequently, the rock and soil 
layers with the same drilling speed have different drill 
bit torques. Therefore, the geological prediction of 
advanced drilling based on a single drilling parameter 
for stratum classification has limitations, and the stratum 
identification method considering the combined effect 
of multiple drilling parameters should be established. 

The multi-functional drilling rig can record the 
data such as drilling speed, torque, number of revolutions, 
thrust, striking energy, striking number, inflow rate, 
inflow pressure, outflow rate, outflow pressure, and 
rock breaking energy. Under normal circumstances, 
the absolute values of different drilling parameters are 
quite different, and the sensitivity of drilling parameters 
to stratum change should be determined by the changing 
rate of drilling parameters. Therefore, the Min-Max 
standardization is used to preprocess the data set, so 
that the result is mapped to the range of 0 to 1, and the 
value of the same order of magnitude is obtained. The 
formula is written as follows: 

min
min max

max max

x x
x

x x





                       （1） 

where maxx  and minx  are the maximum and minimum 
of the data set, respectively. 

For the standardized data, the influence of peak 
value on the data is reduced, and the parameters are 
comparable. 

The normal distribution is of great significance in 
probability and mathematical statistics. Many of the 
commonly used statistical methods are based on the 
assumption that “the quantity under study follows or 
approximately follows a normal distribution”. Both 
experience and theory (the central limit theorem) 
verify the feasibility of this assumption. Therefore, 
analyzing whether the data set approximately follows 
or can be transformed into a normal distribution through 
the frequency distribution histogram is an important 
part of drilling data filtering. If the variable satisfies 

the log-normal distribution, exponential distribution, 
Cauchy distribution, Laplace distribution, and other 
non-normal distributions, it can be transformed by 
equivalent normalization. For example, when the variable 
satisfies the log-normal distribution, it can be converted 
to a normal distribution by taking the logarithm.  

In the drilling process, each drilling parameter 
contains stratum information. When considering these 
parameters comprehensively, the sensitivity of different 
parameters to stratum change should also be considered. 
Several drilling parameters that are most sensitive to 
the change in stratum properties are filtered out through 
correlation analysis, which improves stratum identification 
efficiency. The stratum is a categorical variable, and 
the drilling parameters are generally discrete numerical 
variables, thus the Kendall method can be used to 
calculate the correlation coefficient and concomitant 
probability. The positive value of the correlation coefficient 
represents the positive correlation between the two 
variables, and the negative value represents the negative 
correlation. The concomitant probability represents the 
significant level of the correlation, and the concomitant 
probability less than 0.05 indicates the correlation 
between the two variables is significant. According to 
the magnitude and the positiveness of the correlation 
coefficient between two variables, the drilling parameters 
that are sensitive to stratum change are filtered out. 
2.2 Stratum identification indices 
2.2.1 Rock breaking energy index 

For the down-the-hole (DTH) drill bit, the rock is 
broken by the impact of the drill bit, and the energy 
required for rock breaking is the work done by the 
drill bit impacting the rock, which has a clear physical 
meaning. Based on the principle of energy conservation, 
the energy of breaking per unit volume of rock is 
calculated according to the recorded drilling parameters 
including striking energy, striking number, and drilling 
speed, which is used as a comprehensive index for 
stratum identification. The rock breaking energy formula 
is written as follows[23]: 

Wn
E

Sv
                                  （2） 

where E is the rock breaking energy; W is the striking 
energy; n is the striking number; v is the drilling speed; 
and S is the sectional area of the drill hole. 
2.2.2 Logistic regression probability index 

Logistic regression, known as multivariate disordered 
logistic regression analysis, is a generalized linear 
regression analysis method, which is suitable for the 
case where the dependent variable is categorical, and 
the independent variable is composed of categorical or 
numerical variable. The drilling parameters sensitive 
to stratum change are taken as the independent variables, 
and the stratum type is taken as the dependent variable. 
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The influence of each drilling parameter on stratum 
identification is evaluated by the logistic regression 
model. The logistic regression model containing n 
independent variables is written as follows[24]: 

1

1 e z
P 


                               （3） 

0 1 1 2 2 3 3 n nz x x x x                   （4） 

where P is the probability of a certain stratum 
expressed by the sigmoid function; z is the logistic 
regression characteristic equation; ix  is the drilling 
parameter; i  is the regression coefficient of the drilling 
parameter and represents the degree of influence of 
each parameter on the stratum, which is determined by 
the maximum likelihood estimation. The resulting 
logistic regression value represents the probability that 
the group of samples belongs to a certain stratum. 
2.2.3 Stratum hardness index 

Due to the complexity of the rock breaking mechanism 
of the drill bit, there is usually a nonlinear relationship 
between the drilling parameters. According to the 
multivariable instability index analysis method[25], and 
considering the significance of each drilling parameter, 
a stratum hardness index in the form of an exponential 
multiplication function is proposed. According to the 
variability analysis, the weights of different drilling 
parameters are determined and used as the powers of 
the drilling parameters, and the stratum hardness index 
is obtained by multiplying the powers. When the 
drilling parameters increase, the input power of the 
drilling rig to the surrounding rocks increases, and the 
hardness index increases. The stratum hardness index 
formula is written as follows: 

31 2
1 2 3 , , nW WW W

nD x x x x                         （5） 

where D is the stratum hardness index; ix  is the 
drilling parameter value; and iW  is the weight of the 
drilling parameter. 

The detailed procedure is described as follows: 
Step 1: Variability analysis 
The coefficient of variation (CV) obtained from the 

normalized drilling parameters reflects the sensitivity 
of each parameter to the variation of stratum hardness. 
The larger the CV is, the more sensitive the parameter 
is to stratum changes. The CV is calculated by[26]: 

CV



                                  （6） 

where   is the standard deviation and   is the 
mean value. 

Step 2: Weight calculation 
The weight of each factor is obtained by dividing 

the corresponding CV by the sum of all coefficients of 
variation, as expressed in Eq.(7)[27]. The weight indicates 
how much the parameter contributes to stratum 
identification.   

1 2 3

CV

CV CV CV CV
i

i
n

W 
   

             （7） 

3  Probabilistic classification method for  
stratum identification 

3.1 Bayesian theory 
The Bayesian theory[28−29] applies the observed 

phenomena to modify the subjective judgments (i.e. 
marginal probability) following probability distribution. 
Assuming that there are random events A and B, the 
Bayesian theory can explain the relationship between 
the AB marginal probability and the conditional probability. 
The formula is written as follows: 

     
   

   
( )

i i i i
i

j jj

P B A P A P B A P A
P A B

P BP B A P A
 


 （8） 

1A − nA  is a complete set of events, representing 

all situations of A, i.e. 
1

n
ii

A   , i jA A  , 

  0iP A  . 

In Bayesian theory, each expression has a certain 
meaning: 

P(A) indicates the marginal probability of A; 
P(B) indicates the marginal probability of B; 
P(A|B) represents the conditional probability of A 

when the event B occurred; 
P(B|A) represents the conditional probability of B 

when the event A occurred; 
P(A, B) represents the joint probability of the 

co-occurrence of AB. 
The symmetric form of the Bayesian theory can be 

obtained from the concept of conditional probability: 

   ( , ) ( ) ( )P A B P B A P A P A B P B          （9） 

In the stratum identification problem, i represents 
the stratum category, and x is the attribute vector 
(drilling parameters, rock breaking energy, logistic 
regression probability, and stratum hardness index), 
then the Bayesian theory can be written as follows: 

   ( , ) ( ) ( )P i P i P P i P x x x x x           （10） 

The Bayesian theory based probability classification 
method can estimate the joint probability ( , )P ix  or 
conditional probability ( )P i x , and the category can 
be calculated by maximum likelihood: 

   ( ) arg max arg max ,
i i

c P i P i x x x        （11） 

where c is the maximum likelihood estimate of the 
category, i.e. the maximum value of the conditional 
probability. argmax is the maximum likelihood estimation 
function. For a given measurement point, when P(x) is 
the same, and the calculation result of joint probability 
or conditional probability is the same. 
3.2 Stratum identification model 

The stratum identification is a process of first 
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establishing a classification model and then clarifying 
a decision function. Using numbers to represent 
different strata (e.g. +1 for limestone, −1 for weak 
interlayer), the decision function can be written as 
follows[30]: 

   
   

1 1
( )

1 1

P P
f

P P

  


  

x x
x

x x
                 （12） 

The typical stratum identification model is written 
as follows: 

1      ( )
( )

1      ( )
f x

c
f x




   
x                      （13） 

( )c x  represents the predicted stratum category, 
and the sensitivity of the model changes accordingly 
as the threshold   changes. In the case of ( )f x , the 
function is meaningless and returns a random value. 
3.3 Determination of model parameters  

The stratum identification is divided into positive 
and negative categories, and all possible results of the 
stratum identification model are represented by a 
confusion matrix, as shown in Table 1. The number of 
samples for each situation can be approximated by a 
joint probability as follows[31]: 

TN FP

FN TP

  ( 1, 1)  ( 1, 1)
( 1, 1)  ( 1, 1)   

N NP P
N

P P N N
                

        （14） 

where N is the total number of test samples; 
( 1, 1)P    represents the probability of the event 

when the actual stratum category is 1, and the 
predicted stratum category is 1 (true negative); TNN  
represents the number of true negative events. The 
other situations are defined similarly. The confusion 
matrix of the perfect stratum identification model is 
diagonal. 
 
Table 1  Confusion matrix of stratum identification model 

 Positive category Negative category Sum 

Positive category 
True positive  

category（TP） 
False positive  

category（FP） 
Predicted positive 

category 

Negative category 
False negative  

category（FN） 
True negative  

category（TN） 
Predicted negative 

category 

Sum 
Actual positive 

category 
Actual negative 

category TP+FP+FN+TN

 
ROC is an effect evaluation method for classification 

models based on the Bayesian theory. According to the 
key parameters such as the area under the curve 
(AUC), Youden index, sensitivity, specificity and 
optimal critical point, the threshold   for the stratum 
identification model can be determined. The ROC 
curve is shown in Fig.1. The main indices of ROC are 
obtained according to the confusion matrix, and the 
concepts are shown in Table 2. 

AUC, representing the area under the ROC curve, 
is an index for evaluating the performance of the 
classification model. The meanings of the AUC values 

are shown in Table 3. If the AUC value is less than 0.5, 
the opposite result to the original prediction is feasible. 
 

 
Fig. 1  Diagram of ROC curve  

 

Table 2  ROC analysis indices 
Index Equation Definition 

Sensitivity TPP = TPN /( TPN + FNN ) 

PTP is the proportion of the 
samples that both the predicted
value and the actual value are 
positive to all positive category 
samples  

Specificity TNP = TNN /( FPN + TNN ) 

PTN is the proportion of the 
samples that both the predicted 
value and the actual value are 
negative to all negative category 
samples 

Missed 
diagnosis rate FNP = FNN /( TPN + FNN ) 

PFN is the proportion of the 
samples that the predicted value 
is negative and the actual value 
is positive to all positive category 
samples 

Misdiagnosis 
rate FPP = FPN /( FPN + TNN ) 

PFP is the proportion of the 
samples that the predicted value 
is positive and the actual value 
is negative to all negative category 
samples 

 
Table 3  AUC value meaning 

AUC value Meaning 

[0.95, 1.00] Perfect classification model 

[0.70, 0.95） Good 

[0.50, 0.70） Medium 

0.50 Random guess 

[0.00, 0.50） Opposite prediction 

 
The effect of stratum identification model ultimately 

depends on the selection of threshold  . Fig.2 shows 
the schematic diagram of the influence of  on the 
stratum identification effect. The maximum value of the 
sum of sensitivity and specificity minus 1 corresponding 
to the points on the ROC curve is called the Youden 
index, and the optimal classification effect can be 
obtained by taking the value corresponding to this 
point as the threshold  . 
3.4 Specific implementation  

The specific implementation of stratum identification 
based on the probability classification method is 
shown in Fig.3. Firstly, the data of the calibration hole 
are preprocessed, including parameter standardization, 
frequency distribution analysis and sensitivity analysis, 

0

100.0

1001Specificity /% 

S
en

si
tiv

ity
 /%

 

78.5

21.8

AUC value

Reference line

Point corresponding  
to Youden index 

ROC curve 
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to filter out the key parameters sensitive to stratum 
change. Secondly, based on the principle of energy 
conservation, logistic regression analysis and variability 
analysis, three comprehensive indices for stratum 
identification including rock breaking energy, logistic 
regression probability and stratum hardness are established. 
Finally, the Bayesian theory based probability classification 
method is used to establish the stratum identification 
model, and the model parameters are determined by 
ROC analysis. Input the data of the test hole into the 
model, output the prediction results, and the model 
effect is tested. 

 

 
Fig. 2  Schematic diagram of the influence of threshold  on 

classification effect 

 

 
Fig. 3  Stratum identification flow chart based on multiple 
drilling parameters and probability classification method 

 

4  Field application 

4.1 Project description 
The stratum identification method based on multiple 

drilling parameters and probability classification is 
applied to the advanced drilling geological prediction 
of the Jiudingshan Tunnel of Chuxiong−Dali Expressway 
Extension Project. 

Jiudingshan tunnel is a control node of the extension 
project of Chuxiong−Dali Expressway. It is 7 560 m 
long, of which 1 830 m-long tunnel segment is located 
at the depth of more than 500 m, with the maximum 

depth of 731 m. It is a deep and long tunnel. The 
terrain of the project area is steep, the elevation is 
between 2 180 m and 3 085 m, and the relative height 
difference is 905 m. It belongs to the topographic and 
landform area formed by structural dissolution and 
structural denudation. The tunnel route map is shown 
in Fig.4. 
 

 
Fig. 4  Route map of Jiudingshan tunnel 

 
As shown in Fig.5, the tunnel is located in the 

composite part of the north-south structural zone and 
the Qinghai-Tibet-Yunnan eta-type structural system, 
and passes through two fault zones. The stability of the 
surrounding rocks is low. As shown in Fig.6, due to 
severe tectonic compression and strong metamorphism, 
the rock mass is fragmented and the lithology is 
complex and changes frequently. 

The design of the deep and long tunnel is limited 
by objective conditions such as survey approaches, 
time, and funds. The number and depth of survey holes 
are limited, and the engineering geology and hydrogeology 
of the tunnel cannot be well revealed. Therefore, the 
actual condition of surrounding rocks exposed by 
construction is frequently different from the designed 
rock mass grade, and it is necessary to implement 
advanced drilling to predict the geological condition in 
front of the tunnel face. 
 

 
Fig. 5  Structure outline map of Jiudingshan tunnel 

distribution area (according to 1:200 000 regional geological 
survey report (Dali))[32] 
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Fig. 6  Geological profile of Jiudingshan tunnel 

 
The test section of advanced drilling is located at 

the mileage between K282+214 and K282+395. There 
are 4 groups of drilling data with a total length of 181 m. 
The drilling holes are numbered #1 to #4 as shown in 
Figs.6 and 7. According to the lithology and surrounding 
rock mass grade, the surrounding rocks within the test 
section can be divided into two types, i.e. limestone 
and weak interlayer, which match the overall stratigraphic 

background. 
4.2 Collection of drilling parameters  

The KOKEN RPD-180CBR drilling and injection 
integrated multi-functional drilling rig was used to 
carry out the advanced drilling. For the same tunnel 
face, the data of 1 to 2 drill holes are collected, and the 
drill holes are arranged at the lower left or upper right 
of the core area of the tunnel face, as shown in Fig.8. 

 

 
Fig. 7  Location of drill holes 

 

 

Fig. 8  Cross-section of Jiudingshan tunnel 

 

The multi-functional drilling rig records the data 
including drilling speed, torque, number of revolutions, 
thrust, striking energy, striking number, inflow rate, 
inflow pressure, outflow rate, outflow pressure, and 
rock breaking energy, as listed in Table 4. The rock 
breaking energy is obtained by calculation, and other 
drilling parameters are directly recorded by the sensors. 
The data are recorded every 2 cm of drilling depth. 
4.3 Identification of strata in front of tunnel face 
4.3.1 Drilling parameter sensitivity and stratum  
identification model 

Firstly, the collected data such as drilling speed, 
torque, number of revolutions, thrust, striking energy, 
striking number, inflow rate, inflow pressure, outflow 
rate, outflow pressure, and rock breaking energy are 

preprocessed by standardization. 
 

Table 4  Drilling parameters 

Drilling parameter Range Meaning 

Torque/(kN·m) 0−8.0 
Torque during rock breaking by 

the drill bit
Number of revolutions 

/(r·min−1) 0−72 Drill revolution per minute 

Thrust /kN 0−60 Reactive force on the drill rod

Striking energy /J 0−750 
Energy imposed on rock mass by 

impact drill
Striking number 
/(strike·min−1) 0−2200 Number of strikes per minute

Inflow rate /L 0−240 Water flow to drill bit 

Inflow pressure /MPa 0−10 
Water pressure delivered to 

drill bit

Outflow rate /L 0−240 Water flow out of the drill hole

Outflow pressure /MPa 0−10 
Water pressure delivered out of

drill hole

 
The frequency analysis of the standardized drilling 

parameters is carried out, and the frequency distribution 
diagram of each parameter and its distribution charac- 
teristics are shown in Fig.9. According to the frequency 
distribution of each parameter, the following results are 
obtained: drilling speed, rock breaking energy and inflow 
pressure roughly conform to log-normal distribution; 
thrust and inflow rate roughly conform to Cauchy 
distribution; and torque conforms to the exponential 
distribution. Lognormal, Cauchy and exponential dis- 
tributions are analyzed by converting them to normal 
distributions by equivalent normalization. The dotted 
line in the figure is the probability distribution curve. 
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(a) Lognormal distribution of standardized       (b) Exponential distribution of 

drilling velocity                             standardized torque 

  
(c) Cauchy distribution of standardized   (d) Lognormal distribution of standardized 

thrust                              rock breaking energy 

  
(e) Lognormal distribution of standardized   (f) Cauchy distribution of standardized 

inflow pressure                        inflow rate 

Fig. 9  Frequency distribution diagram 
 

In the “bivariate correlation” module of the SPSS 
(statistical product and service solutions), the Kendall 
method is used to perform sensitivity analysis on the 
drilling parameters without equivalent normalization, 
and the correlation coefficient and the concomitant 
probability are calculated and listed in Table 5. The 
four parameters most sensitive to the degree of stratum 
fragmentation are torque, drilling speed, rock breaking 
energy and thrust. Since the DTH impact rock breaking 
drilling method is implemented, the effect of torque on 
the degree of stratum fragmentation actually is small, but 
the Kendall analysis obtains the opposite result. If the 
equivalent normalization treatment is not performed, the 
obtained sensitivity analysis result is inconsistent with 
reality. 
 
Table 5  Sensitivity of original drilling parameters to degree  
of stratum fragmentation 

Parameter Correlation coefficient Concomitant probability

Drilling speed  0.307 <0.005 
Torque  0.318 <0.005 
Thrust −0.206 <0.005 

Inflow rate −0.133 <0.005 
Inflow pressure  0.139 <0.005 

Rock breaking energy −0.265 <0.005 

 
The equivalent normalization is performed according 

to the following steps: clarify the distribution function 
and density function of the variable; find the distribution 
function and density function of the equivalent normal 

variable; obtain the relationship between the two 
distribution parameters of the equivalent normal variable 
according to the inverse function of the distribution 
function; the parameter relationship is substituted into 
the variable density function and the equivalent normal 
density function, and the two distribution parameters 
of the equivalent normal variable are obtained by 
solving the equations, and the equivalent normalization 
is completed. The equivalent normalizations of the three 
probability distributions in this paper are described as 
follows: logarithmic transformation of lognormal 
distribution data, square root sine transformation of 
exponential distribution data, and multiplication of 
Cauchy distribution data and standard normal distribution 
data. 

The sensitivity analysis is performed on the 
equivalent normalized data with the Kendall method, 
and the results are listed in Table 6. It can be seen 
from the table that the four parameters including rock 
breaking energy, drilling speed, torque and thrust are 
the most sensitive to stratum change, and the absolute 
value of the correlation coefficient exceeds 0.3. Drilling 
speed and torque have a positive correlation with the 
fragmentation degree of the surrounding rocks, while 
rock breaking energy and thrust hold the opposite 
trend. This shows that in general, the faster the drilling 
speed is, the larger the torque, the smaller the thrust 
and the rock breaking energy, the weaker and more 
fragmentary the stratum will be; the slower the drilling 
speed is, the smaller the torque, the larger the thrust 
and the rock-breaking energy, the more integral and 
hard the stratum will be. This result is consistent with 
that obtained by the stratum identification with rock 
breaking energy and penetration rate. 

The four drilling parameters which are the most 
sensitive to stratum change, i.e. rock breaking energy, 
drilling speed, torque and thrust, are selected to calculate 
the three comprehensive indices of rock breaking 
energy, logistic regression probability and stratum 
hardness, and the probability classification method 
based stratum identification model is established. 

 
Table 6  Sensitivity of equivalent normalized drilling  
parameters to degree of formation fragmentation 

Parameter Correlation coefficient Concomitant probability

Drilling speed 0.339 <0.005 
Torque 0.316 <0.005 
Thrust −0.335 <0.005 

Inflow rate −0.222 <0.005 
Inflow pressure 0.148 <0.005 

Rock breaking energy −0.361 <0.005 

 

4.3.2 Stratum identification based on rock breaking 
energy index 

Taking the fragmented stratum and weak interlayer 
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with low hardness as the positive category, the ROC 
analysis of the stratum identification model based on 
rock breaking energy index is shown in Fig.10, and the 
analysis results are listed in Table 7. 

 

 
Fig. 10  ROC curves of drilling parameters of #1 drill hole 

 

Table 7  ROC analysis results of drilling parameters 

Variable 
#1 drill hole #2 drill hole 

AUC 
Critical 
value 

Sensitivity 
/% 

Specificity 
/% 

AUC 
Critical 
value 

Sensitivity 
/% 

Specificity
/% 

Drilling 
speed 0.119 0.708 3 82.60 93.21 0.210 0.101 0 90.9 69.7 

Torque 0.187 0.500 0 90.10 66.60 0.228 0.226 0 74.0 44.4 

Thrust 0.827 0.377 0 90.10 60.80 0.593 0.341 0 80.8 62.9 

Rock 
breaking 
energy 

0.905 0.018 8 87.10 84.10 0.806 0.018 4 90.0 72.0 

 
It can be seen from Fig.10 that the ROC curves of 

thrust, rock breaking energy, drilling speed and torque 
are all far away from the 0.5 reference line, which 
indicates that the stratum classification effects of the 
four parameters are satisfactory. By comparing the 
ROC analysis results of #1 and #2 drill holes in Table 7, 
the AUC value, sensitivity and specificity of drilling 
speed and rock breaking energy are all at high levels, 
but the critical values of drilling speed are 0.708 3 and 
0.101 0, respectively, which indicates a difference of 
several times between the two drill holes; the critical 
values for the two drill holes are 0.500 0 and 0.226 0, 
respectively, about two times difference; the critical 
values of the thrust are relatively close, but the 
specificity is too low to be selected as a stratum 
identification basis. The critical values of rock breaking 
energy are close, and the sensitivity and specificity are 
both high. Therefore, the stratum identification effect 
based on the rock breaking energy index is better than 
that of other single drilling parameters. 

The ideal operation in actual engineering is to use 
the drill holes with known stratum information as 
calibration holes to obtain benchmark parameters, and 
then use the benchmark parameters to perform the 
stratum identification for the drill holes with unknown 
stratum distribution, which are also called test holes. It 
can be seen from the data in Table 7 that the critical 

values of rock breaking energy between adjacent drill 
holes are relatively close, indicating that for the 
probability classification method, the rock breaking 
energy index has the potential ability in cross-hole 
stratum identification. 

Applying the critical value of rock breaking energy 
of #1 drill hole to #2 drill hole, the accuracy of 
limestone stratum identification is 86.8%; the accuracy 
of weak interlayer identification is 84.6%, and the 
overall accuracy is 86.3%. It can be seen from the 
above analysis that the rock breaking energy, as a 
comprehensive index, has a good effect on stratum 
identification between adjacent drill holes. 
4.3.3 Stratum identification based on logistic  
regression probability index  

Considering the drilling speed, torque, thrust and 
rock breaking energy comprehensively, the multivariate 
logistic regression probability index is calculated, and 
the logistic regression equations and stratum identification 
models of different drilling holes are established. When 
taking the weak interlayer as the positive category, the 
multivariate logistic regression equations for #1 and 
#2 drill holes are respectively written as follows: 

1 v n

t e

4.850 21.100 6.478

       7.004 13.336

z x x

x x

   


            （15） 

2 v n

t e

6.522 11.678 13.117

       3.172 43.958

z x x

x x

   


           （16） 

where vx  is the drilling speed; nx  is the torque; tx  
is the thrust; and ex  is the rock breaking energy. The 
ROC analysis results are listed in Table 8. The AUC 
values of the logistic regression probability index 
based classification models for the two drill holes are 
close to 1, and the sensitivity and specificity are both 
at high level, thus the stratum identification effect is 
good. 
 
Table 8  ROC analysis results of stratum identification  
based on logistic regression probability 
Drill hole No. AUC Critical value Sensitivity /% Specificity /%

1 0.945 0.7083 82.60 93.21 
2 0.938 0.7427 91.85 83.36 

 
Applying the critical value of #1 drill hole to the 

stratum identification model of #2 drill hole, the 
accuracy of limestone stratum identification is 81.0%; 
the accuracy of weak interlayer identification is 94.2%, 
and the overall accuracy rate is 84.1%. This shows that 
the logistic regression probability index can be used 
for cross-hole stratum identification, especially a 
better prediction result of the weak interlayer with 
fewer data samples can be obtained. 

The critical values of the logistic regression probability 
for two adjacent drill holes are close, and the sensitivity 
and specificity are both high. Therefore, the stratum 
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identification model based on the logistic regression 
probability index also outperforms that with other single 
drilling parameters. 
4.3.4 Stratum identification based on stratum hardness 
index  

Considering the drilling speed, torque, thrust and 
rock breaking energy comprehensively, the stratum 
hardness indices of #1 and #2 drill holes can be 
obtained by Eqs.(5) to (7): 

Stratum hardness index D of #1 drill hole: 
0.407 0.124 0.048 0.612

1 v n t eD x x x x                    （17） 

Stratum hardness index D of #2 drill hole: 
0.452 0.137 0.066 0.528

2 v n t eD x x x x                    （18） 

The ROC analysis results of the stratum identification 
model are listed in Table 9. Taking the weak interlayer 
as the positive category and performing the ROC 
analysis, the results are shown in Fig.11. 
 
Table 9  ROC analysis results of stratum identification  
based on stratum hardness index 
Drill hole No. AUC Critical value Sensitivity /% Specificity /%

1 0.909 1.49 85.93 82.99 
2 0.940 1.18 93.88 82.46 

 

  
(a) #1 drill hole                 (b) #2 drill hole 

Fig. 11  ROC curve of stratum identification based on 
stratum hardness index 

 

Applying the stratum identification model of #1 
drill hole to the adjacent #2 drill hole, the accuracy of 
the limestone stratum identification is 79.0%, and that 
of the weak interlayer identification is 90.6%. It shows 
that the stratum hardness index D has a strong ability 
in adjacent cross-hole stratum identification. The accuracy 
of the stratum identification model of #1 drill hole is 
comparable to that of the stratum identification model 
of #2 drill hole itself. Therefore, the stratum hardness 
index D is suitable for short-distance cross-hole stratum 
identification. 

The critical values of stratum hardness indices of 
the two adjacent drill holes are also close, and the 
sensitivity and specificity are both high. Therefore, the 
stratum identification model based on the stratum 
hardness index is also outperforms that with other 
single drilling parameters. 

Employing the weighted average value of the 
weights of each factor of #1 and #2 drill holes, the 
combined stratum hardness index of #1 and #2 drill 
holes is obtained as follows: 

0.424 0.129 0.055 0.581
1-2 v n t eD x x x x                   （19） 

According to the drilling results, the study section 
consists of four drill holes with a total length of 181 m. 
The stratum lithology includes limestone and weak 
interlayer, and it meets the condition for long-distance 
cross-hole analysis. The strata of #3 and #4 drill holes, 
which are far away from each other, are predicted, and 
the results are listed in Table 10. The ROC curve is 
shown in Fig.12. The AUC values of #3 and #4 drill 
holes show high sensitivity and specificity, indicating 
that the stratum identification model based on the 
combined stratum hardness index of #1 and #2 drill 
holes has the ability in long-distance cross-hole stratum 
identification. 

Taking the #3 drill hole as an example, the stratum 
identification is based on the combined stratum hardness 
index of #1 and #2 drill holes, the results indicate that 
the accuracy of limestone stratum identification is 
86.7%, and that of weak interlayer identification is 
76.5%. Although the accuracy of the prediction results 
is slightly lower than that of the stratum identification 
model based on the hardness index of #3 drill hole, the 
accuracy of 85.2% can be achieved only with the 
strata information of #1 and #2 drill holes. It can be 
seen from the data in Table 10 that a similar conclusion 
can be drawn for the #4 drill hole. Therefore, the 
stratum hardness index D is suitable for long-distance 
cross-hole stratum identification, which is of great 
significance for reducing the number of coring holes 
and realizing real non-coring stratum prediction. 
 
Table 10  ROC analysis results of long-distance stratum  
identification based on the combined hardness index of #1  
and #2 drill holes 

Drill hole No. AUC Sensitivity /% Specificity /%

3 0.847 76.5 86.7 

4 0.918 75.9 93.2 

 

  
(a) #3 drill hole                   (b) #4 drill hole 

Fig. 12  ROC curve of long-distance stratum identification 
based on the combined hardness index of #3 and  

#4 drill holes 
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4.3.5 Comparison and analysis of strata identification 
effects 

Comparing the results of the stratum identification 
models based on the three comprehensive indices of 
drilling parameters, the accuracies of stratum identification 
are listed in Table 11. Figs.13 and 14 show the 
comparison between the predicted results based on 
various methods and the actual stratum conditions. 

 
Table 11  Identification accuracies of the three stratum 
identification models with respect to different comprehensive  
indices 

Stratum 

Rock 
breaking 

energy /% 

Logistic regression 
probability 

/% 
Stratum hardness index /%

Close Close Close 
#3 drill 

hole
#4 drill 

hole

Limestone 86.8 81.0 79.0 86.7 93.2 
Weak 

interlayer 84.6 94.2 90.6 76.5 75.9 

Average 
accuracy 

86.3 84.1 81.8 85.2 87.0 

 

 

S1 Actual strata  S2 Predicted strata based on rock breaking energy 
S3 Predicted strata based on logistic regression probability 
S4 Predicted strata based on strata hardness index 

Fig. 13  Short-distance prediction results of #2 drill hole 
based on rock breaking energy, logistic regression 

probability and stratum hardness index 

 

           
 

S1 Actual strata  S5 Predicted strata 

(a) #3 drill hole                   (b) #4 drill hole 

Fig. 14  Long-distance prediction results of #3 and #4 drill 
holes based on the combined hardness index of #1 and  

#2 drill holes 

From the prediction accuracies of the stratum 
identification models based on different indices, the 
accuracies of the rock breaking energy index in the 
identification of soft and hard strata are basically the 
same, which is 84%−87%. The accuracies of the 
logistic regression probability index in the identification 
of the two strata are both high, and the accuracy for 
the weak interlayer identification exceeds 94%. When 
the stratum hardness index is used for short-distance 
prediction, the accuracy of limestone identification is 
79%, and the accuracy of weak interlayer identification 
exceeds 90%. When the stratum hardness index is 
used for long-distance prediction, the accuracy of 
limestone identification exceeds 86%. 

The rock breaking energy index incorporates the 
effect of three drilling parameters including striking 
energy, striking number and drilling speed. The energy 
required by the drill bit to break different rocks 
significantly varies. The rock is intact and hard, and 
the required rock breaking energy is large. The rock is 
soft and fragmentary, and the required rock breaking 
energy is small. Therefore, the rock breaking energy 
index is suitable for the identification of strata with 
different hardness values. 

The logistic regression probability index considers 
four parameters including drilling speed, torque, thrust 
and rock breaking energy. Because more drilling para- 
meters are considered, the logistic regression probability 
index has higher accuracies in identifying hard and 
soft strata. The accuracy of weak interlayer identification 
exceeds 90%, mainly because the rock breaking energy 
in the logistic regression probability function has a 
large weight, and its absolute value is greater than the 
other three drilling parameters, thus it has a greater 
impact on the identification result. Meanwhile, combining 
the influences of drilling speed, torque and thrust, the 
total effect makes the prediction result tends to be a 
weak interlayer when the rock breaking energy is 
small, the drilling speed and torque are large, and the 
logistic regression probability value is small. 

The stratum hardness index also considers four 
parameters of drilling speed, torque, thrust and rock 
breaking energy. The weights of each drilling parameter 
are rock breaking energy, drilling speed, torque and 
thrust in descending order. Since the stratum hardness 
index is obtained by multiplying the exponents of the 
four parameters, the effect of each parameter is reinforced, 
and the change rate of the dependent variable is fast. 
For weak interlayer, such effect is greater, thus its 
identification accuracy is higher. Due to the spatial 
variability of surrounding rocks, with the increase in 
distance, the probability of the change in surrounding 
rock property increases. The stratum identification results 
show that the accuracy of limestone identification 
gradually increases, and that of weak interlayer 
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identification gradually decreases. The reason for this 
phenomenon probably is that the spatial variability 
makes the model threshold to be inconsistent with the 
real threshold. The farther the distance is, the difference 
between the model threshold and the real threshold 
will be more obvious, and the accuracy of weak interlayer 
identification reduces. In the practical application, the 
threshold value   should be corrected. It can be seen 
from Fig.2 that when the threshold value   moves 
toward the positive direction of the distribution 
domain, the identification accuracy of the negative 
category increases, and that of the positive category 
decreases. The correction should take into account both 
safety and economy. A good stratum identification 
model should be safe, but not too conservative, and 
will not result in a waste of resources. 

The proposed stratum identification method maintains 
high accuracy in stratum prediction, generally, the 
accuracy exceeds 80%. The surrounding rock information 
is obtained by coring in the conventional advanced 
geological drilling and prospecting method, which is 
time-consuming and costly. Meanwhile, it is difficult 
to obtain intact cores in the fragmented strata, and the 
result is usually qualitative. Besides, the geophysical 
prediction has the shortcoming of non-unique solution. 
The proposed method is based on multiple drilling 
parameters and the probability classification method, 
which can significantly improve the identification 
efficiency of surrounding rocks, save cost, and reduce 
construction interference. 

5  Conclusions 

In this paper, based on multiple drilling parameters 
collected in the drilling process, the Bayesian principle 
based probability classification method is employed to 
establish the stratum identification model, the ROC 
analysis method is used to obtain the model parameters, 
and the stratum identification based on multiple drilling 
parameters and probability classification method is 
realized. Taking the advanced drilling in the Jiudingshan 
tunnel of Chu−Da Expressway as an example, the 
application of the proposed method in the advanced 
geological prediction is introduced. The main conclusions 
are drawn as follows: 

(1) The parameters including drilling speed, rock 
breaking energy, torque and thrust are most sensitive 
to stratum change, and the non-normal distribution can 
be transformed by equivalent normalization, which is 
suitable for the probability classification method. 

(2) Three comprehensive indices for stratum 
identification, including rock breaking energy, logistic 
regression probability and stratum hardness, are established. 
It is the first time that the probability classification 
method is employed in stratum identification. Meanwhile, 

a probability classification model for stratum identification 
based on the Bayesian principle is established. The 
results indicate that the comprehensive index of multiple 
drilling parameters is better than that of a single 
drilling parameter for stratum identification. 

(3) The effects of cross-hole stratum identification 
based on the three comprehensive indices, i.e. rock 
breaking energy, logistic regression probability and 
stratum hardness, are satisfactory. The ROC analysis 
results show that the sensitivity and specificity of the 
three methods are all high, and the stratum identification 
accuracies all exceed 80%. The rock breaking energy 
and logistic regression probability indices are suitable 
for short-distance cross-hole stratum identification, 
and the average identification accuracies of limestone 
and weak interlayer are 85.8% and 87.2%, respectively. 
The identification accuracy of weak interlayer based 
on the logistic regression probability index reaches up 
to 94.2%. The stratum hardness index is suitable for 
long-distance cross-hole stratum identification, and the 
maximum accuracy of limestone identification is 
93.2%. 

(4) Different indices have different applicability. 
For long-distance stratum identification, the model 
threshold should be corrected comprehensively by 
considering the safety, economy, and spatial variability 
of surrounding rocks. 
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