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Abstract: The shear deformation of rock joints is significant for the safety and stability of rock engineering. In order to study the 

constitutive relation of shear deformation in jointed rock mass under a normal stress, the direct shear tests under different normal 

stresses were carried out on the sandstone specimens with irregular joints using the RDS-200 rock direct shear test system. Based on 

the shear stress−deformation curve of the jointed rock, it can be divided into four stages including pre-peak compaction stage, linear 

stage, yield stage and post-peak softening stage. The post-peak softening stage can be further divided into three types including 

platform type, gradual decline type and drop type based on the decreasing magnitude and rate of shear stress at the post-peak period. 

The shear deformation constitutive model of the sandstone with irregular joints was established using piecewise function based on the 

shear deformation characteristics at different stages. Compared with the existing constitutive models, the new proposed shear 

deformation constitutive model of the jointed rock mass has a much higher fitting accuracy for the experimental results, which can 

better describe the deformation characteristics of the jointed rock in the whole shear process. The shear stress−shear displacement 

curve of irregular joints with different roughness coefficients under different normal stresses can be predicted after determining the 

relevant model parameters in the corresponding empirical formula after some direct shear tests. The research is practical for 

understanding the shear deformation of joints in rocks by numerical simulation and the safety evaluation of engineering. 

Keywords: rock mechanics; rock joints; shear deformation; constitutive relation; empirical formula 

 

1  Introduction 

The widely distributed joints in rocks can easily 
affect the strength and deformation behavior of rock 
masses. The study of the deformation characteristics 
of joints is of great significance to improve the safety 
and stability of rock engineering. The shear failure is 
the main failure mode for rock joints. Understanding 
the shear deformation characteristics in the shear failure 
process of rock joint is helpful to predict the shear 
failure of rock joints and estimate the mechanical state 
of rock joints after failure. Therefore, the shear deformation 
constitutive model of rock joints has always become 
the hot research issue in the field of rock mechanics. 
Since the 1960s, based on a series of experimental and 
theoretical analysis, many researchers have established 
some shear displacement constitutive models for rock 
joints which can describe the relationship of shear 
stress−displacement curve of rock joints. 

Goodman et al.[1−2] proposed the joint element 
modeling method and established a linear elastic 
constitutive model at the pre-peak of the joint, which 
was similar to the generalized Hook’s law by analyzing 
the relationship between the macroscopic nonlinear 

deformation of the joint and the nonlinear failure of 
the micro-protrusion at the joint contact. Bandis et al.[3] 

summarized the direct shear experimental results of 
different types of rock joints and established the 
hyperbolic functions to describe the shear deformation 
behavior of joints. Desai et al.[4] established an isotropic 
hardening constitutive model of joint based on plasticity 
theory. All these studies mainly focused on the pre-peak 
part of the joint shear stress−displacement curve, but 
rarely involved the post-peak of the shear stress− 
displacement curve. 

Saeb et al.[5] studied the entire shear deformation 
curve of rock joints, using linear functions to describe 
the shear stress−shear displacement relationship in the 
pre-peak stage, post-peak softening stage, and residual 
stage, respectively. It was a general extension of the 
Goodman’s model [2]. A large number of direct shear 
tests have implied that the joint shear stress−displacement 
curve had a nonlinear stage before and after the 
peak[6−7]. The linear function model proposed by Saeb 
et al [5] can not describe the nonlinear behavior of joint 
shear deformation before and after the peak. Based on 
the results of shear tests of rock joints under constant 
normal load, Amadei et al.[8] proposed the hyperbolic 
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and linear functions to describe the relationship between 
shear stress and shear displacement at the pre-peak 
and post-peak of joint, respectively. Simon[9] believed 
that the exponential function can better describe the 
nonlinear relationship between shear stress and shear 
displacement, and proposed a complete stress−displacement 
surface (CSDS) model. However, it had no explicit 
solution, and the iterative calculation was required to 
obtain the model parameters, making it not convenient 
to be applied in actual engineering analysis[6]. Grasselli 
et al.[10] conducted direct shear tests on 7 types of rock 
tensile joints under constant normal load conditions, and 
proposed the hyperbolic function to fit the post-peak part 
of the shear stress−deformation curve, but the linear 
function was used to describe the pre-peak part of the 
shear stress-deformation curve, which was inconsistent 
with the results of some direct shear tests [11−12]. Tang  
et al.[6,13−14] proposed the hardening-softening shear 
displacement constitutive model of the rock with a 
through joint, the shear displacement constitutive model 
of non-consecutive joint rock mass, and the normalized 
displacement softening model of joint at the post-peak, 
but these constitutive models did not determine the 
quantitative relationship of constitutive model parameters, 
normal stress and joint roughness. Based on the 
statistical damage theory and the macroscopic and 
microscopic deformation characteristics of rock joints, 
Xie[15−17] and Lin[18] proposed the damage constitutive 
models to describe the complete shear deformation 
curve of joints.  

After establishing the quantitative relationship between 
the constitutive model parameters (e.g., pre-peak shear 
stiffness, peak shear displacement, peak shear stress 
and residual strength) and the physical and mechanical 
parameters of rock joints or test condition parameters, 
the shear deformation constitutive model of rock joints 
can be used to predict the shear stress−displacement 
curve of rock joints under different normal stress 
conditions. At present, the quantitative relationship of 
pre-peak shear stiffness, peak shear displacement and 
peak shear stress at different rock joint constants or 
test condition parameters are widely studied, while the 
residual strength is rarely studied due to the large 
discreteness. 

In terms of pre-peak shear stiffness, Nassir et al. [19] 
established the calculation formula of stiffness parameters 
of jointed rock mass through theoretical analysis. 
Kulhawy[20] studied the joint shear deformation char- 
acteristics before shear failure, and established the 
relationship between shear stiffness and normal stress. 
Bandis[3] modified the Kulhawy’s equation by 
introducing the function τ/τp (τ was the shear stress, τp 
was the peak shear stress), making the empirical 
formula can represent the variation of shear stiffness 
to some extent. Qi et al.[21] modified the shear stiffness 

empirical formula proposed by Bandis based on shear 
tests and numerical analysis, which was consistent to 
the actual engineering. 

In terms of peak shear stress, Patton[22] used a single 
dentate joint specimen to study the influence of joint 
morphology on the mechanical properties of joints. 
Based on the climbing effect and tooth cutting effect, 
the two-line model was proposed to describe the peak 
shear stress of joints, which was similar to the Mohr- 
Coulomb criterion. Based on a large number of rock 
joint shear tests, Barton[23] introduced the joint roughness 
coefficient JRC (joint roughness coefficient), and proposed 
the peak shear strength criterion for irregular rock 
joints—JRC-JCS(joint compressive strength) model. 
Grasselli et al.[24] studied the relationship between the 
effective apparent inclination angle and the potential 
contact area ratio of the joint micro-bumps, and proposed 
a three-dimensional topography parameter that can 
reflect the shear direction and the effective shear area. 
On this basis, the peak shear stress model was established. 
Xia et al.[25] proposed a new peak shear stress formula 
based on the three-dimensional topography parameters 
of the Grasselli’s model and the variation law of the 
joint dilatancy angle. Jin et al.[26] used the artificial 
joint specimens to conduct direct shear tests under 
constant normal stress, and established a shear strength 
model considering the three-dimensional topography 
parameters and tensile strength parameters. Fan et al.[27] 
studied the impacts of JRC, JCS and normal stress on 
the peak shear strength of joints, and proposed a peak 
shear strength model suitable for soft-hard joints. 

In terms of peak shear displacement, Barton et al. [28] 
conducted shear tests on joint specimens with different 
lengths and found that the shear displacement was 
about 1% of the joint specimen length L along the 
shear direction when the joint reaches the peak shear 
stress. Wibowo[29] considered the influence of the 
normal stress on the peak shear displacement and 
proposed a linear formula to describe the relationship 
between the joint peak shear displacement and the 
normal stress. Barton[30] analyzed the test data provided 
by Bandis and found that the ratio of peak shear 
displacement to joint length was related to the joint 
roughness coefficient JRC, and proposed an empirical 
formula of joint peak shear displacement considering 
joint length and roughness. Asadollahi et al.[31] analyzed 
a large set of joint shear test data in literatures, and 
found that the peak shear displacement of joints was 
affected by the combined effect of normal stress, joint 
length and joint roughness. Based on the theoretical 
analysis, it showed that the peak shear displacement 
was positively correlated with stress, and was negatively 
correlated with the roughness coefficient JRC. Furthermore, 
an empirical formula for peak shear displacement 
considering normal stress, joint length and joint 
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roughness was proposed. Xia et al.[32] verified that the 
peak shear displacement was positively correlated 
with the normal stress and negatively correlated with 
the roughness coefficient JRC through indoor direct 
shear tests. An empirical formula for the peak shear 
displacement of a regular tooth joint was established. 
Ban et al.[33] used the equivalent dilatancy angle to 
replace the undulation angle in the peak shear displacement 
empirical formula of regular tooth-shaped joints proposed 
by Xia et al.[32], and obtained the empirical formula 
suitable for the peak shear displacement of irregular 
joints. The dilatancy angle in the joint peak shear 
displacement empirical formula proposed by Asadollahi[31] 
and Ban[33] was based on the two-dimensional roughness 
coefficient JRC, which was difficult to fully reflect the 
realistic three-dimensional morphological characteristics 
of the joints. 

In summary, the existing rock joint shear deformation 
constitutive model still has some shortcomings in the 
description of the deformation characteristics of the 
shear stress−displacement curve at each stage, and the 
relevant parameters in the constitutive model need to 
be determined based on the direct shear tests. It is 
inconvenient to predict and estimate the shear deformation 
characteristics of rock joints in actual engineering. In 
this paper, the direct shear tests on irregular sandstone 
joints under different normal stresses were carried out 
to analyze the segmental deformation characteristics 
of the shear stress−displacement curves of rock joints 
under different normal stresses. The relationship between 
parameters in the description functions of each stage, 
the basic physical and mechanical parameters, normal 
stress and/or joint morphology were established. The 
constitutive model that can describe the entire shear 
deformation curve of irregular rock joints under different 
normal stresses was proposed to compare with the 
existing constitutive models of rock joints. The con- 
stitutive model was used to predict the shear stress− 
displacement curve of irregular rock joints under 
different normal stresses, which was helpful to the 
numerical analysis and engineering estimation of the 
stability of jointed rock masses. 

2  Experiments 

2.1 Preparation of specimens 
The sandstone taken from a quarry in Sichuan 

province was composed of quartz, potash feldspar and 
albite. The particle size was about 0.10−0.25 mm. 
First of all, after drilling, sawing and grinding, the 
sandstone was made into ten standard cylindrical 
specimens of Φ50 mm×100 mm (5 specimens were 
used for uniaxial compression tests, another 5 specimens 
were used for triaxial compression tests), and 5 intact 
specimens of Φ50 mm×25 mm were used for Brazil 
split test, according to the related standards. The self-made 

specimen splitting mold[34] was used to make the 
tensile joints near the axial midpoint for 11 cylindrical 
sandstone specimens of Φ50 mm×100 mm. These 11 
sandstone joint specimens were used for direct shear 
test and the manufacturing process is shown in Fig. 1. 

 

 
Fig. 1  Preparation sequence of the jointed rock mass 

 

The complete standard cylindrical specimens were 
used for the uniaxial, triaxial and Brazilian splitting 
tests on the RMT-150B rock mechanics servo testing 
machine developed by the Wuhan Institute of Rock 
and Soil Mechanics, Chinese Academy of Sciences. 
Each test was repeated for 5 times to obtain the basic 
physical and mechanical parameters of sandstone 
specimens including compressive strength c , tensile 
strength t , cohesion c, internal friction angle 0 , 
Poisson’s ratio   and elastic modulus E, as shown in 
Table 1. The basic friction angle b  of rock joints 
was tested by the tilt test of standard cylindrical 
specimens[35], which was also listed in Table 1. 

 

Table 1  Basic mechanical properties of sandstone 

Rock type
c 

/MPa

t  

/MPa 

c 

/MPa 

0 

/(°) 
 

E  

/GPa 

b 

/(°)

Sandstone 83.48 4.15 15.8 33.6 0.211 16.90 32.12

 
2.2 Topography parameters of rock joint 

The Tianyuan OKIO-400 three-dimensional scanner[34] 
was used to obtain the three-dimensional coordinate 
data of the joint surface. The three-dimensional topography 
parameters of the joint surface were obtained by 
analyzing the scanning data in the analysis software. 
The joint topography and the setting method of profiles 
are shown in Fig.2. The Tianyuan OKIO-400 three- 
dimensional scanner uses a global error control module 
to control the scanning accuracy of joint topography. 
The average accuracy is 0.02−0.03 mm, the average 
point distance is 0.31−0.15 mm, and the maximum 
coverage scanning area is 400 mm×300 mm.  

In addition, the roughness coefficient JRC of the 
joint can be determined by calculating the root mean 
square of slope Z2 of each profile (Fig. 2(b)). The 

Press machine

Joint surface

Specimen 
Joint

Rectangle 
groove 

Cylindrical grooveSpecimen
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calculation formula of Z2 is written as follows: 

  
 

1/2
1

2

2 12
1

1

1

l

i i
i

Z y y
l x






 
  

   
            （1） 

where yi is the height coordinate of the joint surface 
profile of sampling point i; l is the number of data 
points; Δx is the interval of data points; and subscript i 
is the natural number. 

 

     
 (a) Scanning morphology of joint surface   (b) Layout of profiles 

Fig. 2  Scanned morphology of joint surface and  
layout of profiles 

 

Then, substituting the Z2i of each two-dimensional 
profile line into the following formula[36] to calculate 
the roughness coefficient JRCi of the i-th profile line 
of the joint. 

2JRC 32.69 32.98lgi iZ                     （2） 

where Z2i is the root mean square of slope of the i-th 
profile. 

Finally, the weighted average value of JRCi for all 
two-dimensional profiles is calculated to obtain the 
joint roughness coefficient JRC that can reflect the 
three-dimensional topography of the joint surface. 

1

1
JRC JRC

w

i
iw 

                            （3） 

where w is the total number of two-dimensional 
profiles, and 16 profiles are set in this paper. 
2.3 Experimental apparatus 

The direct shear test was completed with the RDS-200 
rock direct shear apparatus[34] produced by the GCTS 
company. The overall appearance and schematic of the 
equipment are shown in Figs. 3 and 4, respectively. 

The electro-hydraulic servo control system is used 
in the direct shear instrument to control the loads in 
the normal and shear directions. The maximum loads 
in the shear and the normal loading actuators are 10 t 
and 5 t, respectively, with an accuracy of 0.01 kN. The 
maximum strokes in the shear and the normal directions 
are 25 and 24 mm, respectively, with an accuracy of 
0.001 mm. The inside part of the shearing mechanism 
is composed of upper and lower steel rings. The inner 
diameter of the ring is about 150 mm. The upper and 
lower rings do not touch each other. When the 
specimen is sealed, it is separated by two detachable 
semicircular metal backing rings, which are removed 
during the test. The upper and lower shear rings are 

put into the upper and lower shear boxes. The lower 
shear box is fixed on the black frame platform, and the 
upper shear box is seamlessly linked with the shear 
actuator through the pin. The shear load is transmitted 
to the upper shear box through the shear actuator and 
the pin, and the direction of the shear load is parallel 
to the joints of specimens. 
 

 
Fig. 3  RDS-200 direct shear test system 

 

 
Fig. 4  Schematic diagram of shear box 

 

The direct shear test process is controlled by a 
computer. The control software is a computer aided 
testing software standard (CATS), which can realize 
three boundary conditions including constant normal 
load (CNL), constant normal stiffness (CNS), constant 
normal displacement (CNV), and multiple control 
methods of combined CNL, CNS and CNV. The test 
process is automatically controlled by CATS software, 
which can output graphics such as shear and normal 
stress−displacement curves, and displays the test process 
in real time. The test data is monitored by the sensor 
and is input into the computer. After the test, the data 
can be output to a text file, which can be imported into 
Excel and other office software for processing. 
2.4 Experimental scheme 

The direct shear test was carried out in the CNL 
control mode, and the initial values of the normal 
stress were 3, 6, 9, 12, 15, 18, 21, and 24 MPa. The 
detailed experimental processes were as follows: (1) 
the normal stress was applied to the design value 
according to the load control mode; (2) the tangential 
load was applied by displacement control, with a shear 
rate of 1 mm/min; and (3) the direct shear process was 

Upper shear box

Lower shear box
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Normal load Indenter 
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controlled by the servo system to keep the normal 
stress constant, and the shear test stopped at the shear 
displacement of 8 mm. During the shear test, parameters 
such as normal stress, normal displacement, shear 
stress, and shear displacement were recorded. 

3  Shear tests results and analysis 
3.1 Shear stress−displacement curve 

The shear stress−displacement curves of sandstone 
joints are shown in Fig. 5. It can be seen from Figs. 5(a) − 
5(c) that the shear stress−displacement curves present  

different shape characteristics under different normal 
stresses. The whole curve of rock joint shear stress− 
displacement can be divided into pre-peak compaction 
stage, linear stage, yield stage and post-peak softening 
stage. The decrease rate of shear stress increases with 
the increase of normal stress in the post-peak softening 
stage. Therefore, the shear stress−displacement curves 
of rock joints at the post-peak stage can be divided 
into plateau type, slow drop type and rapid drop type, 
as shown in Figs. 5(d)−5(f).

 

      
(a) Normal stress 3−4 MPa                                         (b) Normal stress 6−15 MPa 

          
(c) Normal stress 18−24 MPa                                        (d) Post-peak plateau type 

       
(e) Post-peak slow drop type                                       (f) Post-peak rapid drop type 

Fig. 5  Shear stress−displacement curves under different normal stresses 
 

In Figs. 5(d)−5(f), ks is the pre-peak shear stiffness; 

lu and l are the shear displacement and shear stress 
corresponding to the starting point of the linear section 
at the pre-peak stage of the shear stress−displacement 
curve; uy and y are the shear displacement and shear 
stress at the starting point of the pre-peak yield phase, 
respectively; up and p are the peak shear displacement 
and peak shear stress; and r is the residual shear 
strength, which can be calculated by using the shear 

stress corresponding to the horizontal asymptotic line 
of the post-peak deformation curve. The variation 
characteristics of the shear stress−displacement curve 
at each stage are as follows: (1) Compaction stage, see 
the section oa in Figs. 5(d)−5(f). Due to the incomplete 
contact between the two joint surfaces in the initial 
state, the contact area and contact pressure of the joint 
protrusions increase with the increase of the shear 
displacement, and the shear stress  increases nonlinearly 
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and rapidly with the increase of the shear displacement 
u. (2) Linear stage, see section ab in Figs. 5(d)−5(f). 
Potentially accessible joint surface bulges are close to 
full contact. When the shear displacement increases, the 
contact stress of the protrusions continues to increase 
in the non-failure state of the contact protrusions. 
From the macroscopic point of view, the joint shear 
stress increases linearly with the increase of the shear 
displacement. (3) Yield stage, see section bc in Figs. 
5(d)−5(f). Partly contacted bulges begin to wear or 
shear, resulting in the increase in the shear displacement. 
The damaged joint surface bulges can not continue to 
provide shear resistance, and the shear resistance 
provided by the new contacted bulges is still greater 
than that of the loss of shear resistance due to bulge 
failure. The joint shear stress decreases with the 
increase of shear displacement, until the shear resistance 
provided by the new contact bulge is equal to the loss 
in the shear resistance due to the damage of the 
original contact bulge, and the shear capacity of the 
joints reaches to the peak. (4) Post-peak stage, see cd 
section in Figs.5(d)−5(f). The shear stress−displacement 
curves of rock joints in the post-peak stage can be 
divided into plateau type, slow drop type and rapid 
drop type. 

The shear stress−displacement curve of the rock 
joint at the post-peak plateau is shown in Fig.5(d). The 
shear stress does not decrease significantly after the 
peak. This type of shear stress−displacement curve 
occurs at the low initial normal stress condition (e.g.,  
3 MPa and 4 MPa). The shear stress−displacement 
curve of the rock joint at the post-peak slow drop type 
is shown in Fig. 5(e). The shear stress decreases slowly 
after the peak, and the decrease rate gradually reduces 
until the shear stress tends to the residual shear strength. 
This type of shear stress−displacement curve occurs in 
the medium initial normal stress (6−15 MPa). The 
shear stress−displacement curve of the rock joint at the 
post-peak drop period is shown in Fig. 5(f). The shear 
stress drops rapidly after the peak, and then it decreases 
slowly till the residual strength. This type of post-peak 
drop curve of shear stress−displacement occurs at a 
much higher initial normal stress (18−24 MPa). 

The aforementioned shear stress−displacement curve 
is formed by the loss of shear resistance of the 
contacted bulges due to damage. When the initial normal 
stress is low, the contact state of joint bulges at the 
post-peak changes, but there is no obvious failure. 
Some joint bulges lose shear resistance when they are 
no longer in contact, other new contacted bulges provide 
roughly equivalent shear resistance, so that the macroscopic 
shear stress of rock joints is not significantly reduced. 
When the initial normal stress is at medium level, the 
post-peak contacted bulges continue to lose shear 
resistance after the continuous failure. The shear resistance 

provided by the new contacted bulges is less than the 
shear resistance lost due to the damage of the initial 
contact bulges, but the difference is not very significant, 
leading to a macroscopically gradual reduction in the 
shear stress of rock joints. When the initial normal 
stress is high, the shear resistance is zero due to the 
simultaneous failure of a large number of contacted 
bulges at the post-peak. The shear resistance provided 
by the instantaneous new contacted bulges is much 
smaller than the loss value due to the massive damage 
of the contacted bulges. Therefore, the drop of shear 
stress of rock joints appears macroscopically. Thereafter, 
as the shear displacement increases, the contacted 
bulges lose shear resistance due to continuous failure; 
while the shear resistance provided by the new 
contacted bulges is less than the shear resistance lost 
due to the damage of the initial contacted bulges, but 
the difference is not large, making the shear stress of 
rock joints gradually decrease macroscopically. 
3.2 Shear stress−displacement curve fitting equations 

During the compaction stage, the shear deformation 
of rock joints is mainly characterized as the adjustment 
of the bulge contact state, and the shear stress increment 
is relatively small. This paper does not consider its 
description and prediction methods. By analyzing the 
characteristics of the linear stage, the yield stage at the 
pre-peak and the post-peak softening stage of the 
typical shear stress−displacement curve, the description 
method of the curve at each stage is determined as 
follows. 

(1) Linear stage before peak. The shear stress   
increases almost linearly with the increase of the shear 
displacement u, and the increase rate is the shear stiff- 
ness ks, which can be described by a linear model [12−13,17]. 

sk u                                    （4） 

Due to the existence of the pre-peak compaction 
stage, the starting point of the pre-peak linear stage is 
not the point where the shear displacement is zero, and 
the shear displacement u in Eq. (4) needs to be 
corrected. The fitted straight line in the pre-peak linear 
stage intersects with the horizontal axis at a point (ui, 
0). The x-coordinate ui of the starting point of the 
pre-peak linear stage can be calculated by the following 
equation. 

y
i y

s

u u
k


                                （5） 

Substituting Eq. (5) into Eq. (4), the shear stress at 
the pre-peak linear stage is obtained as follows: 

y
y

s y i
s

,  k u u u u u
k




  
    

 


 
≤             （6） 

(2) Pre-peak yield stage. The shear stress curve 
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passes the starting point (uy, y) and the peak point (up, 
p) of the yield stage. The curve is concave upward, 
and the shear stress increases at a decelerating rate as 
the shear displacement u increases. Thus, a nonlinear 
function can be used to describe the shear stress at this 
stage. 

 
y

py y

y

, 
n

u u
u u u

r u u z
  


 

 
≤             （7） 

where r, n, and z are fitting parameters, which are 
related to the shape of the shear stress−displacement 
curve. 

It is assumed that the peak point (up, p) of the 
shear stress−displacement curve satisfies the following 
relationship[6, 15]: 

p

p

p

d
0 

d

u u

u uu

 










 


                             （8） 

From Eqs. (7) and (8), r and z can be rewritten as 

   1

p y p y

1
n

r
n u u 


 

                   （9） 

  
 

p y

p y

1n u u
z

n  

 



                       （10） 

Substituting Eqs. (9) and (10) into Eq. (7), the 
shear stress at the pre-peak yield stage is written as 

   
    

1

y p y p y

y y

y p

p

y

, 
1

n

n n

n u u u u
u u u

u u n u u

 
 


  

 
   

 ≤   

                                       （11） 
The influence of parameter n on the pre-peak yield 

stage is shown in Fig. 6. It can be seen from Fig. 6 that 
the parameter n controls the curvature of the curve in 
the pre-peak yield stage. When the parameter n is 
small, the curvature of the curve is large. With the 
increase of the parameter n, the curvature of the curve 
becomes much smaller and the shear stress−displacement 
curve gradually becomes a straight line. Then it transfers 
from deceleration yielding to constant yielding. 
 

 
Fig. 6  Effect of parameters n on constitutive relation 

(3) Post-peak softening stage. In the post-peak 
stage, as the shear displacement increases, the joint 
bulge is gradually damaged by abrasion, the shear 
stress gradually decreases until trends to the residual 
shear strength. The plateau type curve at the post-peak 
is a specific example where the joint bulge wear and 
damage are not obvious. The curve in the post-peak 
softening stage is concave downward, the reduction 
rate of the shear stress gradually decreases and passes 
through the peak point (up, p). The nonlinear function 
is used to describe the shear stress at this stage. 

   p r p r pexp + , 
m

t u u u u        


     （12） 

where t and m are fitting parameters, t >0, m >0. 
It can be seen from Eq. (12) that p is the limit 

value of shear stress when the shear displacement u 
tends to up, and r is the limit value of shear stress 
when the shear displacement u tends to infinity. The 
influences of the parameters t and m on the shape of 
the curve are shown in Fig. 7. 
 

 
(a) Impact of parameter t on constitutive relationship 

 
(b) Impact of parameter m on constitutive relationship 

Fig. 7  Effect of parameters t and m on constitutive relation 

 
It can be seen from Fig. 7(a) that the larger the 

parameter t, the greater the reduction rate of shear 
stress in the post-peak softening stage, and the faster 
the shear stress tends to the residual strength. It can be 
seen from Fig. 7(b) that all curves intersect at the 
position 1 mm after the peak displacement when t is a 
constant. Under the same shear displacement, the 
shear stress before the intersection point increases as 
the value of m increases, and the shear stress after the 
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intersection point decreases as the value of m increases. 
It can also be seen from Fig. 7(b) that the larger the 
parameter m, the wider the platform at both ends of 
the curve in the post-peak softening stage, the greater 
the reduction rate of the shear stress curve between the 
two platforms. The greater of the initial shear 
displacement where the shear stress starts to decrease 
rapidly, the smaller the shear displacement to reach the 
residual shear stress. Therefore, the changes in the 
values of the parameters t and m can describe the 
different curve shapes at the post-peak softening stage. 

The following piecewise function can be used to 
describe the whole shear stress−displacement curve of 
rock joints. 

   
    
   
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k u u u u u
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n u u u u
u u u

u u n u u

t u u u u
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 
 

  







   
    

    


   
   


       







≤

≤    

                                       （13） 
 

3.3 Shear stress−displacement curve fitting effect 
The steps for fitting the shear stress−displacement 

curve are as follows: 
(1) The relevant parameters ks, uy, up, y, and p in 

Eq. (13) can be directly obtained from the direct shear 
test, see Table 2 for much details. n is the normal 
stress, and Rs is the profile area ratio. The default 
value of the normal stress of the specimen S3 is 6 MPa. 
When the normal stress value is input, it is mistakenly 
set to 4 MPa, which is also listed in Table 2. 

(2) The experimental values of parameters ks, uy, up, 
y, and p are substituted into Eqs. (11) and (12), 
respectively, to fit the direct shear test data and obtain 
the values of parameters n, t, m and r , see Table 2 
for much details. Because the maximum shear 
displacement is set as a small value, some test curves 
at the post-peak stage do not obviously enter the 
residual stage, resulting in several negative values of 
fitting residual shear strength (S4, S10). Thus, the 
fitting of the shear stress at the post-peak stage is not 
performed. 

(3) Substituting all model parameters into Eq. (13), 
the segmented function of the curve fitting for each 
group of test data can be obtained. 

Table 2  Relevant parameters in the constitutive model 
Specimen 

No. n /MPa JRC Rs ks /(MPa·mm−1) l /MPa y /MPa p /MPa ul /mm uy /mm up /mm r /MPa n t m 

S1 3 6.64 1.027 8 2.25 0.45 2.11 2.54 0.40 1.14 1.52 2.39 2.944 0.07 7.264

S2 3 10.88 1.035 5 2.16 0.44 2.60 2.73 0.27 1.27 1.48 2.21 2.991 0.78 3.636

S3 4 8.54 1.029 9 2.47 0.71 2.69 3.38 0.33 1.14 2.00 3.22 4.130 0.79 6.539

S4 6 7.35 1.030 0 3.21 0.48 4.89 5.20 0.67 2.04 2.21 −36.91 3.669 1.81 0.646

S5 9 12.37 1.046 6 4.91 0.91 7.40 8.01 0.56 1.91 2.14 4.92 5.694 39.44 1.868

S6 12 7.59 1.031 6 4.51 0.61 8.24 8.82 0.34 2.03 2.40 6.66 10.733 58.65 1.417

S7 12 6.72 1.026 2 4.59 0.51 6.40 8.21 0.46 1.66 2.29 5.06 15.410 27.91 1.354

S8 15 8.13 1.030 5 5.63 2.12 11.57 11.88 0.76 2.44 2.53 9.12 16.442 71.22 1.277

S9 18 10.18 1.033 5 6.15 0.55 13.47 14.21 0.34 2.44 2.79 6.35 14.155 124.86 0.623

S10 21 7.87 1.032 6 5.70 1.79 14.06 15.26 0.81 2.96 3.23 −0.11 17.049 3.95 0.387

S11 24 8.70 1.033 8 6.65 0.59 16.37 18.05 0.59 2.97 3.39 11.60 26.336 382.01 0.232

 
In order to verify the rationality of Eq. (13), it is 

compared with Tang’s model[13] and Xie’s model[15−17]. 
Tang’s model can be expressed as[13] 
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          （14） 

where m1, n1, a, and b are all fitting parameters related 
to the shape of the shear stress−deformation curve. u0 
is the shear displacement of the starting point at the 
pre-peak yield stage; 0 is the shear stress of the 
starting point at the pre-peak yield stage; and ur is the 

shear displacement at the starting point of the residual 
stage. 

Xie’s model can be written as[15−17] 

 
2

s s

s
s r r s

0

, 

exp , 
m

k u u u

u u
k u u u

u


 


             




≤

   （15） 
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                                       （16） 
where us is the shear displacement of the starting point 
at the pre-peak yield stage; and m2 is the distribution 
parameter of the function. 
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Three sets of calculation results are listed, representing 
the fitting effects of the shear stress−displacement curves 
of three post-peak deformation types. It includes the 
specimen S1 with an initial normal stress of 3 MPa 
(post-peak plateau type), specimen S6 with an initial 
normal stress of 12 MPa (post-peak slow drop type) 
and specimen S11 with an initial normal stress of 24 MPa 
(post-peak rapid drop type). Fig. 8 shows the com- 
parison between the calculation and the experimental 
curves of the three models. 
 

 
(a) Specimen S1 (n =3 MPa) 

 
(b) Specimen S6 (n =12 MPa) 

 
(c) Specimen S11 (n =24 MPa) 

Fig. 8  Comparison of calculated and experimental shear 
stress-shear displacement curves 

 
For the shear stress−displacement test curve with 

post-peak plateau under low normal stress, the fitting 
curves of Eq. (13), Tang’s model[13] and Xie’s 
model[15−17] are very close to the experimental curves 
in Fig. 8(a). But the fitting curve of Xie’s model[15−17] 
is significantly higher than the test curve in the 
pre-peak yield stage, and it is also higher than the test 

curve in the second half of the plateau at the 
post-peak. 

For the slow drop shear stress−displacement test 
curve at the post-peak under the medium normal stress, 
the fitting curves of Eq. (13) and Tang’s model[13] are 
closer to the test curve in Fig. 8(b). The fitting curve 
of Xie’s model[15−17] is significantly lower than the test 
curve in the post-peak softening stage. 

For the shear stress−displacement test curve of the 
post-peak drop type under high normal stress, the 
fitting curves of Eq. (13) and Tang’s model[13] are 
closer to the test curve in Fig. 8(c). The fitting curve of 
Xie’s model[15−17] is significantly higher than the 
experimental curve in the post-peak softening stage, 
which can’t describe the rapid drop of the shear stress 
at the post-peak. 

To further illustrate the fitting accuracy and 
reliability of Eq. (13), Tang’s model[13] and Xie’s 
model[15−17], the determination coefficient R2 is used 
and listed in Table 3. For these three types of shear 
stress−displacement curves of rock joints, it can be seen 
that the determination coefficient R2 of Eq. (13) is the 
largest in the Table 3, indicating that Eq. (13) has a 
better fitting effect on the direct shear test data and can 
be better describe the shear stress−displacement curve 
of rock joint at the pre-peak linear stage, pre-peak 
yield stage, and post-peak softening stage.  
 
Table 3  R2 in formula (13), Xie’s model[15−17] and  
Tang’s model[13] 

Sample No.
R2 

Eq.(13) Xie’s model Tang’s model 

S1 0.993 0.981 0.991 

S6 0.989 0.971 0.984 

S11 0.991 0.872 0.989 

 
In addition, the piecewise Eq. (14) in Tang’s 

model[13] shows the shear stress (i.e. residual shear 
strength) is different at the softening stage and the 
residual stage at the residual displacement ur. The 
model function is discontinuous, which does not 
conform to the actual shear deformation of rock joints. 

The Eq.(13), Tang’s model[13] and Xie’s model[15−17] 

are applied to obtain the parameters such as shear 
stiffness, yield strength, peak strength and residual 
strength, and the actual value of the test curve is 
applied to calculate the parameters. If there is no direct 
shear test of a rough joint rock under a certain normal 
stress condition, the calculation curve can’t be obtained. 
By carrying out direct shear tests to obtain the shear 
stress−displacement curve of the rock joint under a 
certain normal stress, only the model parameters of 
this specific roughness joint under this normal stress 
can be determined. All these parameters can only be 
used to describe the shear deformation behavior of this 
specific specimen, while the shear deformation behavior 
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of roughness joints under other normal stresses cannot 
be described. When all these models are implemented 
into numerical simulators, it is impossible to simulate 
the shear deformation behavior of rock joints with 
different roughness under different normal stresses by 
inputting the direct shear test parameters of these 
specific specimens. Therefore, the above models cannot 
be used as the constitutive model, and the above 
parameters are required to be further determined. The 
shear deformation behavior of joints with different 
roughness under different normal stresses can be 
described by inputting the model parameters. 

4  Constitutive model 

4.1 Peak shear stress 
The peak shear stress of rock joints can be estimated 

by Barton’s equation[23], and the specific expression is 

p n b
n

JCS
tan JRClg  


  

   
   

             （17） 

For fresh un-weathered rock joints, JCS is equal to 
compressive strength c . 

Figure 9 shows the predicted peak shear stresses 
calculated from Eq. (17) and experimental values. It 
can be seen from Fig. 9 that the data points are 
distributed around the straight line y=x, indicating that 
the prediction result of Eq. (17) is better, and the 
predicted value is relatively close to the experimental 
value. 
 

 
Fig. 9  Comparison of predicted and experimental peak 

shear stress 
 

In order to quantitatively analyze the prediction 
accuracy of Eq. (17), the mean value of the relative 
error is written as 

1

1 j

i

M C

j M





                            （18） 

where  is the mean value of relative error (%); M is 
the test value of the i-th group of direct shear test 
(MPa); C is the predicted value of the i-th group of 
direct shear test (MPa); and j is the serial number of 
test data sets, respectively.  

The calculated mean value of the relative error is 
6.9%, which shows that the prediction error of the 
peak shear stress in Eq. (17) is relatively small, and 
this formula can be used to estimate the peak shear 
stress. 
4.2 Peak shear displacement 

Based on the positive correlation between the peak 
shear displacement of the joint and the normal stress, 
and the negative correlation of peak shear displacement 
with the roughness of the joint, Xia et al.[32] proposed 
the expression of the peak shear displacement of the 
regular tooth-shaped joint: 

n
1 1cos

p JCS
1e

b iu
a

L

 
 
                           （19） 

where a1 and b1 are fitting parameters; i1 is the 
undulation angle; and L is the length of the jointed 
specimen along the shear direction. 

In order to extend Eq. (19) to the irregular joints, 
the following assumptions are made. 

(1) The area of the irregular joint profile is 
regarded as S1 and the projection area is regarded as S2. 
The angle ia between the two planes can be regarded 
as the equivalent dilatancy angle of the irregular 
joint[37], as shown in Fig. 10. 
 

 
Fig. 10  Calculation model diagram of average  

climbing angle ia 

 
According to the geometric relationship, the equivalent 

dilatancy angle ia is calculated as 

 a sarccos 1 /i R                          （20） 

The calculation equation of the area ratio Rs of the 
profile is 

t
s

A
R

A
                                  （21） 

where At is the unfolded area of the profile at the joint 
surface; and A is the projected area of the joint surface. 

(2) The inclination angle of regular joints is 
regarded as the equivalent dilatancy angle of irregular 
joints. 

1 ai i                                    （22） 

Combining Eqs. (19), (20) and (22), the peak shear 
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displacement of irregular joints is written as 

n
1

s

1

JCS
p 1e

b
Ru La

 
 
                            （23） 

Based on the direct shear tests, the parameters 
a1=0.029 and b1=3.191 can be calculated by fitting. 

Figure 11 shows the joint peak shear displacement 
test value and the predicted value calculated from Eq. 
(23). It can be seen from Fig. 11 that the data points 
are all distributed around the straight line y=x, 
indicating that the prediction result of Eq. (23) is better. 
The predicted value is closer to the experimental value, 
and the average relative error is 6.4%. It proves that 
the Eq. (23) is applicable for the prediction of the peak 
shear displacement of irregular joints under different 
normal stresses. 
 

 
Fig. 11  Comparison of predicted and experimental values 

of peak shear displacement 

 
4.3 Shear stiffness at the pre-peak stage 

The pre-peak shear stiffness is the slope of the 
fitted straight line in the pre-peak linear stage. The 
starting and ending points of the linear phase before 
the peak can be determined by the shear stress difference 
method proposed by Xie et al. (2020)[17]. The parameters 
u1 /up, uy /up, 1 /p, and y /p under different normal 
stresses are shown in Fig. 12. They basically fluctuate 
within a certain range, showing no obvious relationship 
with the normal stress. Table 4 lists the maximum, 
minimum and average values of the 4 datasets. 
 

 
Fig. 12  Relationship between ul /up, uy /up, l /p, y /p and 

normal stress 

Table 4  The maximum, minimum and average values of  
four groups of data 

Name 
l

p

u

u
/% y

p

u

u
/% l

p




/% y

p




/% 

Minimum value 12.3 66.8 3.30 81.1 

Maximum value 30.0 96.4 21.3 97.3 

Mean value 21.7 85.5 11.4 91.2 

 
It can be seen from Table 4 that the yield shear 

stress is about 81.1%−97.3% of the peak shear stress, 
with an average value of 91.2%, which is basically 
consistent with about 90% of the peak shear stress 
provided by Hungr et al.(1978)[38]. Goodman[39] found 
that the yield shear stress was approximately equal to 
70%−90% of the peak shear stress. Compared with the 
values listed in Table 4, this value is about 10% lower. 

Here, the mean values of u1 /up, uy /up, 1 /p and   
y /p are used to establish u1, uy, 1 and y. 

p p

p p

l y

l y

0.217 0.855

0.114 0.912  

u u u u

   
 
 





；

；
               （24） 

Then the pre-peak shear stiffness is written as 

y l p p p
s

y l p p p

0.912 0.114
1.251

0.855 0.217
k

u u u u u

     
  

 
    （25） 

The Eq. (25) is determined by the test values of p 
and up, and it cannot be used for the prediction of 
pre-peak shear stiffness. However, the predicted p and 
up calculated from Eqs. (17) and (23) are substituted 
into Eq. (25) to calculate the pre-peak shear stiffness, 
which will result in a certain prediction error. 
Therefore, the Eq. (25) is corrected as 

pc
s

pc

1.251k q
u


                            （26） 

where q is the correction factor, and q=0.936 by fitting; 
pc is the predicted value calculated by Eq. (17); and 
upc is the predicted value calculated by Eq. (23).  

Figure 13 shows the experimental and the predicted 
values of the pre-peak shear stiffness calculated by Eq. 
(26). It can be seen from Fig. 13 that the data points  

 

 
Fig. 13  Comparison of predicted and experimental values 

of shear stiffness at the pre-peak period 
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are all distributed around the straight line y=x, which 
shows that the Eq. (26) has a good prediction results, 
and the mean value of the relative error is 6.3%. This 
equation can be applied to estimate the pre-peak shear 
stiffness. 
4.4 Fitting parameters of n，t，m, and r 

Figures14(a)−14(d) show the relationship between 
the parameters n, t, m, r and the normal stress. 

 

 
(a) Relationship of parameter n and normal stress 

 
(b) Relationship of parameter t and normal stress 

 
(c) Relationship of parameter m and normal stress 

 
(d) Relationship of parameter r and normal stress 

Fig. 14  Relationships between parameters n, t, m, r  
and normal stress 

It can be seen from Fig.14 that the parameters n 

and r increase linearly with the normal stress, while 

the parameter t increases in a power function, and the 

parameter m decreases in an exponential function. 

Then the expressions of the parameters n, t, m, and 

r can be written as follows: 

n1.043 5 0.601n                         （27） 

5 3.561 8
n6 10t                           （28） 

 n8.878 1exp 0.148m                    （29） 

r n0.404 2 1.235                        （30） 

4.5 Prediction of the shear stress−displacement  

curve of rock joints 

As described in Sections 4.1−4.4, the parameters ks, 

uy, up, y, p, r , n, t, and m in Eq. (13) can be 

estimated by the equations considering the basic 

physical and mechanical parameters of rock joints and 

experimental condition parameters (e.g., normal stress). 

Therefore, the shear stress−displacement of rock joints 

with different roughness can be predicted under different 

normal stresses after determining the constant of the 

expression. Meanwhile, the Eq. (13) can be used as the 

constitutive model of shear deformation of rock joints. 

In order to verify the correctness of the method, the 

specimens S1, S6 and S11 are taken as examples to 

predict the shear stress−displacement curve of rock 

joints. The detailed prediction steps are as follows. 

At first, the shear tests of rock joints with the 

certain roughness under different normal stresses are 

carried out, combined with the basic physical and 

mechanical parameters of rock joints, the functions of 

parameters ks, uy, up, y, p, r , n, t, and m are 

determined. They are then substituted into Eq.(13), 

which is the shear deformation constitutive model of 

rock joint. Finally, the shear stress under different 

shear displacements was calculated by the constitutive 

model as shown in Fig. 15. The calculated curves of 

specimens S1, S6, and S11 are close to the experimental 

curves, with the fitting correlation coefficients of 0.939, 

0.946, and 0.908. After including the cumulative errors 

of the model parameter expressions, the calculation 

results are still acceptable. The Eq.(13) can be imp- 

lemented in the numerical simulation software to 

capture the shear deformation behavior of rock joints.         
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(a) Specimen S1 (n =3 MPa)                  (b) Specimen S6 (n =12 MPa)                   (c) Specimen S11 (n =24 MPa) 

Fig. 15  Comparison of calculated and experimental shear stress−shear displacement curves for different rock specimens 
 

5  Conclusions 

(1) Obvious stages can be identified in shear 
stress−displacement curve of rock joints. Ignoring the 
pre-peak compaction stage, the shear deformation 
process of rock joints can be divided into three stages: 
the pre-peak linear stage, pre-peak yield stage, and the 
post-peak softening stage. Among them, the decreasing 
amplitude and rate of shear stress in the post-peak 
softening stage increase with the increase of normal 
stress. Thus, the shear stress−displacement curve can 
be divided into three types: plateau after peak, slow 
drop after peak, and rapid drop after peak. 

(2) According to the shape characteristics of the 
shear stress−displacement curve of rock joints at each 
stage, the characteristic parameter expressions of the 
shear stress−displacement curve are determined and 
the constitutive model of the shear deformation of 
rock joints is proposed. By fitting the experimental 
data, the correctness of the constitutive model is 
verified. Compared with the Xie’s model[15−17] and the 
Tang’s model[13], the new proposed model in this paper 
has a higher fitting accuracy to the test data, and it is 
more accurate in describing the shear stress−displacement 
curve of the rock joints at each stage. 

(3) In the proposed shear deformation constitutive 
model of rock joints, the parameters ks, uy, up, y, p, 

r , n, t, and m can be estimated by the basic physical 
and mechanical parameters of rock joints and test 
conditions (e.g., normal stress). The shear stress− 
displacement curve of rock joints with different roughness 
under different normal stresses can be predicted, which 
is helpful for the numerical analysis and engineering 
estimation of the stability of the jointed rock mass. 
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