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Reliability of spatially variable earth slopes based on the upper bound analysis 
 
SUN Zhi-hao1,  TAN Xiao-hui1,  SUN Zhi-bin2,  LIN Xin1,  YAO Yu-chuan1 
1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China 
2. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, Anhui 230009, China 

 
Abstract: The spatial variability is an inherent uncertainty of soils. The random field theory is used to represent the spatial variability 
of soils, and the random field discretization is performed by the Karhunen-Loève (KL) expansion method. Using the slope upper bound 
analysis based on the discrete mechanism, the discretization results of the internal friction angle random field at each point in the space 
are considered when generating the velocity discontinuity surface. And the strength reduction technique, bisection searching, and sequential 
quadratic programming method are combined to solve the safety factor of slopes. The first-order reliability method (FORM) and subset 
simulation (SS) are employed for slope reliability analysis. Given the characteristics of SS and the shear strength reduction technique, 
an optimization algorithm coupling the two is proposed to improve computational efficiency. By calculating and analyzing an earth slope, 
the similarities and differences between FORM and SS based on the KL expansion method in solving the slope reliability index and 
failure consequence are clarified. The influence of the coefficient of variation of soil strength parameters on the slope reliability index 
and failure consequence is investigated, providing a theoretical basis for risk analysis and prevention of slopes. 
Keywords: earth slope; upper bound analysis; spatial variability; first-order reliability method (FORM); subset simulation (SS) 
 
1  Introduction 

From the basic principle of plasticity mechanics, slope 
stability analysis can be divided into the upper and lower 
bound limit analysis. The upper bound limit analysis can 
strictly construct the kinematically admissible failure 
velocity field and has a rigorous theoretical foundation. 
At present, upper bound limit analysis is widely used in 
the stability analysis of slopes[1−7]. For non-homogeneous 
slopes, Wang et al.[5] investigated the application of upper 
limit analysis in the stability of non-homogeneous slopes 
with layered soil profiles. Luan et al.[6] explored the app- 
lication of upper bound limit analysis in the stability 
analysis of non-homogeneous soil slopes under anti-sliding 
pile reinforcement conditions, assuming that the cohesion 
varies linearly with depth. Sun et al.[7] proposed a failure 
mechanism for the upper bound limit analysis of slopes 
based on the idea of spatial discretization, which can 
further consider the linear variation of the internal friction 
angle with depth. However, in most cases, the soil cohesion 
and internal friction angle are not simply linear with depth 
but are random fields with spatially variable properties.  

The spatially variable properties of soil parameters 
such as cohesion and internal friction angle are also known 
as spatial variability or spatial autocorrelation, i.e., the 
properties of any two points in the soil layer are different 
but have some correlation, which is caused by different 
material composition, depositional environment, stress 
history, and climatic conditions. The spatial variability 
of soils can be described by the random field theory[8]. 

In order to obtain the specific realized value of the random 
field, random field discretization is required. The commonly 
used methods for random field discretization are the point 
discretization method, the local averaging subdivision, 
and the series expansion method[9−10]. Among them, the 
series expansion method expresses random fields as the 
sum of finite deterministic continuous functions without 
pre-partitioning the random field elements. As long as 
the coordinates of a point in space are given, the random 
field of geotechnical parameters at that point can be 
obtained by discretizing the random field. 

The Karhunen-Loève expansion method (KL expansion 
method for short) is one of the series expansion methods, 
which is based on the spectral decomposition of the auto- 
covariance function for the discretization of random fields 
and has high computational efficiency and accuracy[10], 
so it is widely used in the reliability analysis of slope 
engineering. For example, Li et al.[11] used KL expansion 
method and finite element slip surface stress method for 
the reliability analysis of non-homogeneous slopes; Huang 
et al.[12] used a combination of KL expansion method and 
finite element limit analysis method for landslide risk 
analysis; Cho[13] used the KL expansion method and limit 
equilibrium method to study the influence of soil spatial 
variability on the slope stability. Li et al.[11] and Huang 
et al.[12] also pointed out that the volume of sliding mass 
can be estimated based on the slope critical slip surface 
location, which represents the failure consequence of 
slope instability for slope risk analysis. Most of these 
slope reliability and risk analysis use the limit equilibrium 
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slice method or numerical analysis as deterministic analysis 
methods. Among them, the limit equilibrium slice method 
requires a pre-defined slip surface and a simplified assump- 
tion on the slice interaction force. The numerical analysis 
results may vary with the mesh refinement, and additional 
treatment is usually required to obtain the critical slip 
surface. Both methods have certain limitations for the 
stability analysis and critical slip surface determination 
of slopes with spatially variable soil. 

As mentioned above, limit analysis, as an essential 
method for geotechnical structural analysis with rigorous 
plasticity mechanic assumptions, is widely used to solve 
slope stability. The technique requires the soil to strictly 
satisfy the associated flow law and cannot be directly 
applied to reliability problems considering the spatial 
variability of strength parameters. To avoid this difficulty, 
some scholars have studied the reliability of slopes with 
spatially variable soils using finite element limit analysis[14]. 
This theory can obtain the slope upper and lower bound 
limits of ultimate loads, but it requires similar element 
division and search optimization as finite element analysis 
when applied, which significantly increases the workload 
during reliability analysis. Therefore, this paper adopts 
the discrete upper bound limit mechanism proposed in 
recent years for reliability analysis of spatially variable 
slopes, which overcomes the applicability problems of 
traditional limit analysis in the study of such slopes and 
provides a new idea for the combination of limit analysis 
method and reliability analysis. 

In summary, this paper proposes to combine the KL 
expansion method, upper bound limit analysis of non- 
homogeneous slopes based on the discrete mechanism 
and two commonly used reliability analysis methods (first- 
order reliability method (FORM) and subset simulation 
(SS)) for reliability analysis of spatially variable non- 
homogeneous slopes. Among them, the KL expansion 
method is used to carry out the discretization of random 
fields to obtain the soil strength parameters at arbitrary 
locations in space; the velocity discontinuity surface (sliding 
surface) is generated using the discrete mechanism, based 
on which the upper bound limit analysis, strength reduction 
method, sequential quadratic programming (SQP) algorithm 
and bisection method can be used jointly to analyze the 
slope by the fixed value method and calculate the slope 
safety factor; FORM and SS are used to solve the slope 
reliability index and failure consequence. Combining the 
characteristics of the strength reduction method and SS, 
this paper also proposes an optimization algorithm coupling 
them to improve the computational efficiency. Finally, the 
correctness of the method is verified by example analysis, 
and the influence of the variation coefficient of soil strength 
parameters on the slope reliability index and failure con- 
sequence is obtained. 

 
Fig. 1  Discrete mechanism for slope upper bound analysis 

2  Upper bound limit analysis for slope stability 

2.1 Discrete mechanism for slope upper bound limit 
analysis 

As shown in Fig.1, the height of the slope is H, and 
the slope angle is α, AC is the velocity discontinuity 
surface of the upper bound limit analysis mechanism (i.e., 
the potential slip surface of the slope). Let the blocks 
above and below the velocity discontinuity surface be rigid 
bodies, and the sliding block ABC rotates around the point 
O with an angular velocity ω. Establish a rectangular 
coordinate system with C as the origin at the toe of the 
slope. θ0 and θh are the angles between the points C and 
A on the velocity discontinuity surface and the negative 
x−axis, respectively, and r0 is the radius from the point 
C to the center of rotation. 

The slope upper bound limit analysis mechanism is 
based on the idea of spatial discretization[7]. In this mecha- 
nism, the velocity discontinuity surface consists of a 
series of straight-line segments (PiPi+1). Starting from the 
toe C (denoted as point P0), a point-to-point approach is 
used to generate the velocity discontinuity surface from 
the toe to the crest of the slope until the ordinate yi+1 of 
Pi+1 is greater than or equal to the slope height H. When 
yi+1>H, the coordinates of Pi+1 can be adjusted by the 
linear interpolation method so that Pi+1 falls on the crest. 
According to the associated flow rule, the angle between 
the tangential velocity of the velocity discontinuity surface 
and the real velocity is required to be the soil friction 
angle, i.e., the angle between the vector 1i iPP+


 and the 

velocity iv


 of Pi is (π − ϕi). Therefore, as shown in Fig.1, 
when the coordinate (xi, yi) of Pi is known, the coordinate 
(xi+1, yi+1) of Pi+1 can be solved by the following equations: 
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where xO and yO are the coordinates of the rotation center 
point O; ϕi is the angle between Pi and the negative x−axis; 
ϕi is the soil internal friction angle at Pi; and δθ is the angle 
between two adjacent rays OPi and OPi+1 (i.e., the angle 
between the two endpoints of the segment PiPi+1 and the 
rotation center), which determines the accuracy of the 
generated velocity discontinuity surface. The results indicate 
that the method has sufficient computational accuracy 
when δθ = 0.1º[7]. 

As the origin of the coordinate is determined, the 
coordinate (xO, yO) of the rotation center O can be expressed 
by θ0 and r0. Therefore, for the discrete mechanism of 
slope upper bound limit analysis, when the angle δθ  
between two adjacent rays is assumed to be constant, the 
key parameters that determine the position of the velocity 
discontinuity surface are θ0, r0 and the soil internal friction 
angle ϕ. 
2.2 Slope stability analysis 

When using the upper bound limit theorem for slope 
stability analysis, it is necessary to calculate the external 
force power W and the internal energy dissipation D of 
the failure mechanism. As shown in Fig.2, the failure 
mechanism ABC is divided into n geometric discrete units 
PiBPi+1 (i = 0, 1, …, n−1), then the external force power 
is the gravitational power of the soil mass W, which can 
be solved by the sum of the gravitational power Wi of each 
discrete unit. The internal energy dissipation D is the 
energy dissipation on the velocity discontinuity surface 
of the soil mass, which can be solved by the sum of the 
energy dissipation Di of each discrete linear slip surface 
PiPi+1. The calculation formulas of W and D are as follows: 

cosi Gi GiW S Rγω θ= −                      （3） 

cosi i i iD c L Rω ϕ=                         （4） 

where γ  is the soil unit weight; ω is the angular velocity; 
Si is the area of the discretized block PiBPi+1; RGi is the 
distance from the center of rotation O to the center of 
gravity of the discretized block PGi; θGi is the angle between 
OPGi and the negative x−axis; Ri is the distance from the 
center of rotation O to the point Pi; Li is the length of the 
linear slip surface PiPi+1; and ci and ϕi are the cohesion 
and the internal friction angle at the starting point Pi of 
the i−th linear slip surface, respectively. 

In the upper bound limit analysis, the slope safety 
factor can be obtained by the strength reduction method. 
Let the strength reduction factor be Fs, and the reduced 
cohesion and internal friction angle be cR and ϕR, respec- 
tively, then: 

R sc c F= , 1
R stan (tan )Fϕ ϕ−=               （5） 

In calculating the slope energy dissipation, it is nece- 
ssary to substitute the reduced strength parameters into 
Eq.(4) for analysis. At this time, the key parameters that 
determine the location of velocity discontinuity surface 

are θ0, r0 and ϕR. Hence, the location of velocity discon- 
tinuity surface and the slope energy dissipation function 
fWD = |W−D| are functions of parameters θ0, r0, Fs, c and ϕ.  

 

Fig. 2  Power calculation of the discrete unit 
 

According to the upper bound theorem, if a set of 
parameters θ0, r0, and Fs exist and make slope energy 
dissipation function fWD=0, the slope is in the limit state; 
otherwise, the slope is in the stable condition. When c, 
ϕ and Fs are known, fWD is a function of θ0 and r0, so the 
solution of the slope safety factor Fs is a multivariate 
optimization problem. In this paper, the nonlinear sequence 
quadratic programming (SQP) method is used for the 
optimal solution of fWD, and the critical strength reduction 
factor is searched for by the bisection method as the slope 
safety factor Fs. The specific steps of the strength reduction 
method are described in the literature [7], and the conver- 
gence criterion of the safety factor is taken as 0.001 in 
this paper. 

3  Slope reliability analysis considering spatial 
variability of soil properties 

3.1 Random field model describing spatial variability 
Assume that the cohesion and the internal friction 

angle obey two-dimensional stationary log-normal random 
fields, and then the number of random fields N = 2. The 
spatial variability of soils is often represented by an 
autocorrelation function of the following form[15]: 

22

1 2
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x x            （6） 

where x=[x, y] is the spatial coordinate; Δx and Δy are 
the horizontal and vertical distances between any two 
points in the space, respectively; and Lh and Lv are the 
autocorrelation distances in the horizontal and vertical 
coordinate directions, respectively. 

According to the basic principle of the KL expansion 
method, the discrete results of a log-normal random field 
can be expressed as: 
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where Ĥi(x) is the random field discretized value at a 
point x in the space; M is the number of terms of the KL 
expansion method; λj and fj(x) are the j-th eigenvalue and 
eigenfunction (j = 1, 2, …, M) of the autocorrelation 
function ρ(x1, x2), respectively; ξ is a matrix of size M × 
N whose elements are independent standard normal random 
variables; L is the lower triangular matrix obtained from 
the Cholesky decomposition of the mutual correlation 
matrix RY with a size of N × N in the associated standard 
normal space (Y space); the superscript T denotes the 
transpose of the matrix; the relational expression of RY 

and RX(RX is the mutual correlation matrix in the original 
space X) is given in the reference [16]; and ln iXμ  and 

ln iXσ  are the mean value and the mean square deviation 
after normalization for the i−th (i = 1, 2, …, N) random 
field, which can be calculated as follows: 

( )
2 2

ln

2 2
ln ln

ln(1 ) ln(1 ( ) )

1ln 1 = ln
2

i i i i

i i i i i

X X X X

X X X X X

σ δ σ μ

μ μ δ μ σ

= + = +



= + − 


     （8） 

where ln iXμ  and ln iXσ  are the mean value and the mean 
square deviation for the i−th random field, respectively. 

It can be seen from Eqs. (7) and (8) that the key of 
the KL expansion method is to determine the eigenvalue, 
the eigenfunction, and the number of expansion terms 
M for the autocorrelation function. Among them, the 
eigenvalue and the eigenfunction are jointly determined 
by the autocorrelation function and the definition domain 
of the random field. 

The number of expansion term M can be determined 
from the random field discretization error εd and its allow- 
able error εd0, where the discrete error is calculated as[17]: 

d
1

11
M

j
jS

ε λ
=

= −                             （9） 

where S is the area of the discrete region of the random 
field. From Eq.(9), it can be seen that the discretization 
error εd decreases with the increase of the number of 
expansion term M. In order to balance the computational 
accuracy and efficiency, the minimum M value satisfying 
εd ≤ εd0 can be taken as the optimal number of expansion 
term. 
3.2 Reliability analysis method based on the KL 
expansion method 

Without loss of generality, the slope performance 
function is taken as: 

s( ) ( ) 1Z g F= = −X X                      （10） 

where X = [X1, …, Xn](i = 1, 2, …, n) is the basic variable; 
and n is the number of basic variable. 

From Eq.(7), it can be seen that after the random field 
is discretized by the KL expansion method, the continuous 
random field can be represented by a random vector 
matrix ξ of size M × N. Considering the elements of ξ 

as the basic variables X in the reliability analysis, the 
KL expansion method can be combined with various 
conventional reliability analysis methods to perform the 
reliability analysis of slopes. 

In the discrete mechanism of the slope upper bound 
limit analysis, the velocity discontinuity surface AC consists 
of a series of linear segments (PiPi+1), and the position 
of AC is determined by the variables representing the center 
of rotation (θ0 and r0), while the direction of each segment 
PiPi+1 in AC is determined by the internal friction angle 
ϕi at the point Pi. Therefore, when considering the spatial 
variability of soil, it is convenient to combine the discre- 
tization of random field with the generation of velocity 
discontinuity, then the slope safety factor can be solved 
based on the discretization mechanism of upper bound 
analysis, and the reliability analysis of slope can be 
conducted on this basis. 

The main steps of slope reliability analysis by com- 
bining upper bound limit analysis and the KL expansion 
method are as follows. 

(1) Solve the eigenvalues and eigenfunctions in Eq.(7) 
using the KL expansion method for the slope geometry 
and the soil spatially variable property. 

(2) Determine the number of KL expansion term M 
of the random field according to εd ≤ εd0 and the dis- 
cretization error expression (Eq.(9)). 

(3) Generate a single realization for the random vector 
matrix ξ. 

(4) Substitute the eigenvalues, eigenfunctions, and 
realizations of the random vector matrix determined in 
steps (1) and (3) into Eq.(7) to obtain a realization of the 
discrete value function Ĥi(x) of the random field. 

(5) The slope safety factor is calculated jointly using 
the strength reduction method, the bisection method and 
the SQP method. 

It should be noted that the process of generating the 
random vector matrix in step (3) is related to the reliability 
analysis method. When the KL expansion method is 
combined with FORM, the random vector matrix values 
can be obtained from the iterative calculation of FORM, 
and the detailed iterative calculation process is described 
in the reference [15]; when the KL expansion method is 
combined with SS, the random vector matrix values are 
generated randomly by the operation rules of SS. The 
related theory of SS and the optimization algorithm of SS 
coupled with the strength reduction method are described 
below. 
3.2.1 Brief introduction of SS 

SS[18] is an advanced Monte Carlo simulation (MCS) 
method that can efficiently estimate the probability of 
failure for high-dimensional small-probability events. Its 
central idea is that the probability P(F) of occurrence for 
a small-probability event F is expressed as the product 
of large conditional probabilities of a series of intermediate 
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failure events according to the conditional probabilities, 
that is 

f 1 1
2

( ) ( ) ( | )
m

i i
i

P P F P F P F F −
=

= = ⋅∏             （11） 

where the intermediate failure event is Fi = {Z ≤ bi} (i = 
1, 2, …, m); Z is the performance function value of the 
event; bi is the critical performance function value of the 
intermediate failure event (referred to as threshold); P(Fi) 
is the occurrence probability of the event Fi; and P(Fi|Fi−1) 
is the occurrence probability of Fi occurring under the 
condition that the event Fi−1 occurs. Let b1 > b2 > … > 
bm−1 > bm = 0, then the intermediate failure events have 
the inclusion relation, F1 ⊃ F2 ⊃ … ⊃ Fm−1 ⊃ Fm. 

In the process of SS, the threshold bi for intermediate 
failure events can be determined automatically based on 
the value of the performance function corresponding to 
the conditional probability sample such that both P(F1) 
and P(Fi|Fi−1) (i = 2, 3, ..., m-1) are equal to the specified 
conditional probability p0, where the intermediate failure 
conditional samples of events are generated by Markov 
Chain Monte Carlo simulation (MCMC for short)[19]. 

The main steps of SS are as follows: 
(a) The first layer of SS (random sampling layer): 

generate Ns samples randomly, calculate the performance 
function value corresponding to each sample, and determine 
the Ns function value of the p0×100-th percentile as the 
threshold b1 of the intermediate failure event F1. The process 
of determining the p0×100-th percentile is as follows: first 
sort the Ns performance function values in ascending 
order; then determine the p0Ns-th and the p0Ns+1-th 
performance function values according to the sorting 
results and total sample number Ns; finally, the mean value 
of these two performance function values is taken as the 
p0×100-th percentile. The sample corresponding to the 
first p0Ns minimum performance function value after sorting 
is selected as the seed sample of F1. Among the Ns samples 
in the first layer, there are a total of p0Ns performance 
function values of sample points less than or equal to the 
threshold b1, so the conditional probability P(F1) = p0 
is satisfied. 

(b) The i−th layer of SS (i ≥ 2, conditional sampling 
layer): Ns−p0Ns conditional samples are generated using 
MCMC for the p0Ns seed samples obtained at the i−1-th 
layer. The function values of all Ns samples (including 
p0Ns seed samples and newly generated Ns(1−p0) samples) 
are used to calculate the threshold bi of the intermediate 
failure event Fi by the method of determining the p0×100-th 
percentile in step (a); the samples corresponding to the 
first p0Ns minimum performance function values after 
sorting are selected as the seed samples for the next layer 
of SS. Among the Ns samples at the i−th layer, a total of 
p0Ns sample points have performance function values less 
than or equal to the threshold bi, and therefore also satisfy 
the conditional probability P(Fi|Fi−1) = p0. 

(3) Repeat step (b) until the p0×100-th percentile 

function value of the layer satisfies bi≤0. Let the layer 
be the m-th layer of SS and let bm = 0. Count the number 
of sample points Nf in this layer whose function value 
is less than or equal to 0, then P(Fm|Fm−1) = Nf/Ns. 

According to the above steps, Eq.(11) can be simplified 
as: 

1
f 0 f s( )mP p N N−=                         （12） 

where m is the number of SS layers; and Ns is the number 
of samples required for each layer of SS. In SS, the 
conditional probability p0 = 10% is commonly taken[19], 
then for a failure event with a magnitude of 10−m, a total 
of m layers of SS need to be executed, the corresponding 
calculation times of the performance function is: 

T s 0 s s+( 1)(1 ) (0.9 0.1)N N m p N N m= − − = +    （13） 

After the failure probability of slope is obtained, the 
slope reliability index can be calculated by the following 
formula: 

1
f( )Pβ Φ −= −                             （14） 

3.2.2 Optimization algorithm coupling SS and strength 
reduction method 

Compared with the direct MCS, SS has higher com- 
putational efficiency. However, the essence of SS is a 
simulation-based reliability analysis method. In order to 
obtain more accurate simulation results, at least several 
thousand simulations are generally required, and each 
simulation needs to call the fixed value method procedure 
to solve the slope safety factor. According to the derivation 
in Section 2, the slope safety factor of the discrete mecha- 
nism based on the upper bound limit analysis needs to 
be solved by a combination of strength reduction method, 
bisection method, and optimization method. For each 
strength reduction factor in the bisection method, the SQP 
method needs to be called in the upper bound limit analysis 
to solve the minimum value of the energy dissipation 
function fWDmin = min|W−D|, which is relatively large and 
requires several iterations. To address the problem of the 
low computational efficiency of the strength reduction 
method in SS, Huang et al.[20] used the value of yield 
function to measure the safety of slopes, which avoids 
a large number of iterations in solving the slope safety 
factor by bisection method and improves the computational 
efficiency. However, this method is only applicable to 
the slope stability analysis based on the elastoplastic finite 
element method. The calculation process of the upper 
bound limit analysis of slope stability adopted in this 
paper does not involve yield function, so the improved 
method cannot be applied. For this reason, this paper 
proposes an optimization algorithm coupled with SS and 
strength reduction method starting from reducing the 
bisection number of the strength reduction factors in order 
to reduce the computational cost of slope reliability analysis 
and improve the computational efficiency. The proposed 
optimization method is mainly based on the following 
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two reasons. 
On the one hand, SS uses MCMC to generate con- 

ditional samples ξ1 based on the current sample ξ0. The 
brief process is to generate the underlying samples v based 
on the current sample ξ0 and calculate the corresponding 
performance function value, and if the performance function 
value is within the threshold of the target intermediate 
failure event, let ξ1 = v, otherwise let ξ1 = ξ0. For the 
conditional sampling layer of SS, the underlying sample 
v generated by MCMC has approximately a probability 
of 56% will be determined to be outside the target threshold 
and discarded[19], at which point there is no need to calculate 
the specific performance function values of these discarded 
samples. Therefore, in the bisection process of strength 
reduction method, if a conditional sample can be quickly 
judged to be outside the target threshold, the bisection 
process of strength reduction method can be ended in 
advance, and the computational efficiency can be improved. 

On the other hand, from the calculation process of 
SS in Section 3.2.1, it is known that the threshold value 
bi of an intermediate failure event is determined by the 
p0Ns-th and the p0Ns+1-th values after sorting the sample 
performance function values from smallest to largest, 
similar to the idea in the previous section if the performance 
function value of a sample can be quickly judged to be 
greater than the p0Ns+1-th sample function value, then 
the true function value of the sample does not influence 
the threshold value bi, and the process of solving the slope 
safety factor can be ended in advance. Therefore, after 
the number of sample points is greater than p0Ns+1, a 
threshold bi, j can be set to be adjusted dynamically with 
the increase of sample points. The dynamic threshold bi, j 
can be expressed by the p0Ns+1-th performance function 
value after the ascending order of the known sample 
performance function values, and bi, j has a tendency to 
decrease with the increase of sample points. 

Combining the above two aspects, the following two 
points are optimized in this paper for the algorithm coupling 
SS and strength reduction method. 

(1) Optimization 1 
For each conditional sample generated by SS con- 

ditional sampling layer (i.e., the i−th layer of SS, i ≥ 2), 
whether the true value of slope safety factor Fs meets 
Fs – 1 > bi−1 is decided according to the threshold value 
bi−1 of the i−1-th intermediate failure event. If it is, it 
means that the sample point is not in the domain of the 
target event Fi−1 = {Z ≤ bi−1}, and its safety factor is taken 
as any value greater than 1 + bi−1 and the solving process 
of the slope safety factor is exited; otherwise, it is necessary 
to update the upper limit of safety factor of bisection 
method to 1 + bi−1 and continue to calculate the slope safety 
factor. Of which, the method to determine whether Fs 
meets Fs – 1 > bi−1 is as follows: let the strength reduction 
factor be 1 + bi−1, and reduce the strength parameters 
according to Eq. (5); use the SQP method to search the 

minimum slope energy dissipation fWDmin. If fWDmin > 0, it 
indicates that the true slope safety factor is Fs > 1 + bi−1. 

(2) Optimization 2 
In the sample generation at the i-th layer of SS (i = 

1, 2, …, m), with the increase of simulation numbers, 
when the number of performance functions obtained 
(the conditional sampling layer includes the known Nsp0 
seeds) meets j ≥ Nsp0 + 1, the dynamic threshold bi, j 
will also be updated correspondingly. When calculating 
the performance function value for the j+1-th sample, it 
should be judged that whether the true slope safety factor 
Fs meets Fs > 1 + bi, j: if it is, the sample point does not 
belong to the intermediate event Fi = {Z ≤ bi}, the true 
safety factor has no impact on the result of SS, the value 
in the field (1 + bi, j, 1 + bi−1] can be used as the safety factor; 
if it is not, it is necessary to update the upper limit of the 
safety factor of bisection method to 1 + bi, j, and continue 
to solve the safety factor. It is worth noting that when the 
updated dynamic threshold bi, j ≤ 0, it indicates that SS 
has entered into the m-th layer. At this time, let the dynamic 
threshold bm, j of the SS layer be always 0. 

To sum up, the optimization algorithm proposed in 
this paper is based on the different influence of Fs in the 
SS process, and ending Fs true value search process of 
some samples in advance to improve the computational 
efficiency. Although Optimization 2 will lead to partial 
distortion of the cumulative distribution obtained by SS, 
it has no influence on the SS process, the failure probability, 
and the failure sample. 

When combining the optimization algorithm with 
the upper limit analysis for reliability analysis of slope 
stability, the computational flow is shown in Fig.3. Fig.3(a) 
shows the flowchart of the main procedure of the subset 
simulation method, which is used to carry out the reliability 
analysis and solve for the failure probability of slopes, 
including the dispersion of random fields, the solution 
of safety factors and the determination of the threshold 
value of each subset layer. Among them, the most com- 
putationally intensive is the step of solving the slope 
safety factor (also known as solving the performance 
function) using the bisection method (see the thick box 
in Fig.3(a)), which can be realized by calling the subroutine 
(dotted box) in Fig.3(b). Fig.3(b) shows the flowchart of 
the subroutine for solving the slope safety factor by the 
fixed-value method, including judging whether the newly 
generated sample using MCMC is within the target thre- 
shold (long dashed box), estimating the threshold of 
intermediate failure events and judging whether the sample 
is within the estimated domain of intermediate failure 
events (short dashed box). 

4  Examples 
4.1 Slope reliability index and failure consequence 

The earth slope under consideration has a height of 
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(a) Main program flowchart for failure probability calculation by SS                 (b) Subroutine flowchart for safety factor calculation 

Fig. 3  Flowchart of Subset Simulation based on the optimization algorithm 
 
10 m, the slope ratio is 1:2, and the soil unit weight is 
20 kN /m³. The cohesion and internal friction angle are 
random fields obeying log-normal distributions, their 
statistical probability parameters are shown in Table 2, 
and the autocorrelation function is of exponential square 
type. The reliability analysis of the slope is carried out 
by FORM and SS, respectively, where the sample number 
per level of SS Ns = 1 000. 
 
Table 1  Probability distribution characteristic of soil 
parameters 

Parameter Mean 
value 

Coefficient of 
variation δ Lh /m Lv /m

Cohesion c 10 kPa 0.3 30 3  

Internal friction angle ϕ 20º 0.2 30 3  

 
4.1.1 Reliability index 

For the random field method, when Lh = Lv = ∞, the 
random field degenerates to random variable, therefore, 
the correctness of the method in this paper can be verified 
by comparing the reliability index of the random variable 
method with that of the random field method when Lh = 
Lv = ∞. Table 2 shows the reliability analysis results of 
the slope under three conditions, where M denotes the 
number of expansion term which is obtained from whether 
the discretization error of the random field satisfies εd ≤ 
εd0 = 5%; NZ denotes the number of solving the performance 
function in the reliability analysis process, that is, the 
number of calls to the subroutine for solving the slope 

safety factor in the upper bound limit analysis; MCS 
denotes the Monte Carlo simulation method, which is 
used to verify the calculation accuracy of FORM and 
SS. 

As can be seen from Table 2, for the random variable 
method and the random field method at Lh = Lv = ∞, the 
reliability indexes obtained using FORM, SS and MCS 
are very close, which shows the correctness of the method 
in this paper. The slight differences are caused by the 
different specific solution process of FORM, SS, and 
MCS and the discretization error of the random field. 
Comparing the calculation results of FORM, SS, and 
MCS under the baseline conditions shown in Table 1, 
the difference between the reliability indexes of FORM 
and MCS is about 4.2%, and the difference between the 
reliability indexes of SS and MCS is about 3.8%, which 
shows that the reliability indexes of the three are consistent, 
proving that the KL-based FORM and SS in this paper 
have better calculation accuracy. From Table 2, it can 
also be seen that the reliability index of slope has a large 
increase when considering the spatial variability of soil, 
so the influence of soil spatial variability should be con- 
sidered in slope stability analysis, otherwise, overly 
conservative results will be obtained. 

As for the computational efficiency, it can be seen 
from Table 2 that the number of calls Nz of FORM for 
solving the safety factor subroutine is much smaller than 
that of SS under the three computational conditions, 

Start 

Solve eigenvalues and eigenvectors to determine the number of 
series expansion items M 

Let i = i + 1 

If i = 1, generate a random vector 
sample from the sample random 

distribution 

If i ≥2, generate a random vector 
sample through MCMC 

Let j = j + 1 

Calculate Fsj by 
bisection method 

When i = 1, j = Ns or 
when i≥2, j = Ns(1 − p0)

Determine bi 

bi≤0 

Let i = m and count the number Nf of Z≤0 

Calculate the slope failure probability 

Y 

Y 

N 

N 

Give the ranges for θ0, r0 and Fs, in which Fs∈[Fs1, Fs2] 

i≥2 Let Fs = bi−1 + 1

Strength reduction and calculate fWDmin

fWDmin > 0 

Reduce Fs2  to 
 bi, j−1 + 1 
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fWDmin>0 
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indicating that the KL expansion-based FORM can be 
well applied to the slope reliability analysis considering 
soil spatial variability. For another, although the value 
of Nz of SS is greater than the corresponding value of 
FORM, for the optimized SS, the bisection searching 
process is ended earlier for many samples in the process 
of calculating the slope safety factor, which contributes 
to improving the computational efficiency of SS. Take 
the SS calculation process of the random field method 
(Lh = 30 m，Lv = 3 m) in Table 2 as an example: in the 
process of sample generation at the first level of SS, the 
dynamic threshold b1 avoids the process of solving the 
true performance function values for 673 samples (only 
1 strength reduction is required); in the process of sample 
generation at the second level of SS, by judging the sample 
function values outside the b1 domain, the process of 
solving the real performance function values for 459 
samples is avoided (only 1 strength reduction is required); 
the process of solving the real performance function values 
of 281 samples is avoided by the dynamic threshold b2 
(only 2 strength reductions are required). It can be seen 
that for the 1 900 samples generated in the SS process, 
1 132 samples require only 1 strength reduction and 281 
samples require only 2 strength reductions. Thus, the 
optimization algorithm speeds up the process of solving 
the failure probability and obtaining failure samples for SS. 
 
Table 2  Slope reliability index and failure consequence 

Reliability analysis method M NZ Reliability 
index β 

Sliding 
volume 

/(m3·m−1)

Random variable method 
FORM － 15 1.65 70.27 

SS － 1 900 1.68 70.56 
MCS － 10 000 1.67 70.77 

 

Random field method 
(Lh = Lv = ∞) 

FORM  1 15 1.65 70.04 
SS  1 1 900 1.68 71.34 

MCS  1 10 000 1.67 70.55 

Random field method 
(Lh = 30 m, Lv = 3 m) 

FORM 18 438 2.28 71.92 
SS 18 1 900 2.29 75.26 

MCS 18 10 000 2.38 75.11 

 
4.1.2 Failure consequence 

In the slope reliability analysis, both the slope reliability 
index and the location of critical slip surface need to be 
determined. The slope failure probability can be solved 
based on the reliability index; the volume of slope failure 
can be estimated according to the location of the critical 
slip surface of the slope failure sample, which can be 
used to characterize the consequences of slope failure[11−12]. 
Estimating the slope failure probability and failure con- 
sequences is a prerequisite for slope risk analysis. 

The reliability analysis of the slope using FORM can 
obtain the critical slip surface, which is corresponding 
to the critical failure mode of the slope when the iterative 
calculation of the reliability index reaches stability (see 
the dashed line in Fig.4). For the plane strain analysis, 
the area enclosed by the slip surface and the outside 

surface of the slope represents the volume of the sliding 
mass. The essence of SS is a simulation sampling, and 
it can only obtain the critical slip surface of the slope under 
different sampling conditions like MCS (see the multiple 
black solid lines in Fig.4), but SS can easily obtain more 
failure samples through MCMC to estimate the failure 
consequences of multiple failure modes of the slope more 
accurately[11]. In this case, the mean value of the sliding 
volume for all failure modes of SS can be taken as the 
slope failure consequence indicator[11]. The slope sliding 
volumes under the three calculation conditions are shown 
in Table 2. It can be seen that for the random variable 
method and the random field method with Lh = Lv = ∞, 
the sliding volumes calculated by FORM, SS and MCS 
are consistent and their values are slightly smaller than 
that of the random field method under the baseline condition. 
This indicates that the failure consequence of the slope 
increases slightly when the soil spatial variability is 
considered. Therefore, the influence of soil spatial vari- 
ability should be considered in the slope stability analysis, 
otherwise the slope failure consequences will be under- 
estimated to some extent. 

 
Fig. 4  Location of critical slip surfaces 

 
4.2 Sensitivity analysis of slope reliability index and 
failure consequence 

Based on the benchmark conditions shown in Table 1, 
the relationships between the slope reliability index, failure 
consequence, slip surface location and the coefficients 
of variation of strength parameters are studied when the 
coefficients of variation of the cohesion and internal 
friction angle vary between 0.1 and 0.4, respectively, and 
the results are shown in Figs 5−7. 

As seen in Fig.5(a), the reliability indexes obtained 
by FORM and SS are basically the same for the same 
coefficient of variation, which again proves the correctness 
of the slope reliability analysis method based on the 
discrete upper bound limit mechanism in this paper. It 
can also be seen from this figure that the reliability index 
of the slope decreases with the increase of the coefficient 
of variation of the soil strength parameter. When the 
coefficient of variation of internal friction angle δϕ = 
0.2, the reliability index of the slope decreases slowly 
with the increase of δc. When the coefficient of variation 
of cohesion δc = 0.3, the reliability index of the slope 
decreases rapidly with the increase of δϕ .  Therefore, the 
slope reliability index is more sensitive to the coefficient 
of variation of internal friction angle.  
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As seen in Fig.5(b), for the same coefficient of variation, 
the slope failure consequences obtained by FORM and 
SS differ from each other, and the failure consequences 
of the former are smaller than those of the latter in most 
cases, which is caused by the inherent difference of cal- 
culating the critical slip surface and failure consequence 
in FORM and SS. However, under the same conditions, 
the slope failure consequences derived from FORM and 
SS are consistent with the change of coefficients of variation. 
For example, when the coefficient of variation of internal 
friction angle δϕ = 0.2, the slope failure consequence 
decreases with the increase of δc. When the coefficient of 
variation of cohesion δc = 0.3, the slope failure consequence 
increases with the increase of δϕ . 

 
(a) Relationship between the coefficient of variation and the reliability index 

 
(b) Relationship between the coefficient of variation and the failure 

consequence 

Fig. 5  Influence of coefficient of variation on the reliability 
index and failure consequence of slope 

 
The variation shown in Fig.5(b) can be further explained 

by Figs. 6−7. In Figs. 6−7, the dashed line is the location 
of the critical slip surface of FORM, and the multiple 
black solid lines indicate the location of the critical slip 
surface obtained by SS. When δϕ = 0.2, with the increase 
of δc, the position of the dashed line in Fig.6 shifts slightly 
upward, i.e., the consequence of slope failure decreases 
slightly with the increase of δc; when δc = 0.3, the position 
of the dashed line in Fig.7 moves downward with the 
increase of δϕ , i.e., the consequence of slope failure 
slightly increases with the increase of δϕ . It can also be 
seen from Fig.7 that the fluctuation range of the critical 
slip surface position increases with the increase of δϕ . 
Considering this variation in the prevention and control 
of slopes is helpful and more reasonable for slope sup- 
porting designs. 

The relationship between the slope failure consequence 
and the coefficient of variation of soil strength parameters 
shown in Figs. 5−7 is related to the log-normal distribution 
of strength parameters. Taking SS as an example, the 

 
(a) δc = 0.1                      (b) δc = 0.2 

 
(c) δc = 0.3                      (d) δc = 0.4 

Fig. 6  Slope critical slip surface under different variation 
coefficients of cohesion (δϕ = 0.2) 

 
(a) δϕ = 0.1                      (b) δϕ = 0.2 

 
(c) δϕ = 0.3                      (d) δϕ = 0.4 

Fig. 7  Slope critical slip surface under different variation 
coefficients of internal friction angle (δc = 0.3) 

 
frequency distribution of the dispersion results of cohesion 
adjacent to the slip surface is plotted under different 
coefficients of variation, and the results are shown in 
Fig.8. This figure shows that the dispersion of cohesion 
increases with the increase of the coefficient of variation, 
and its mode shifts to the left, and the non-normality is 
more obvious. The internal friction angle also obeys the 
log-normal random field, and its frequency distribution 
varies with the coefficient of variation in a similar manner 
to Fig.8. The literature [21] states that for a given slope 
geometry, the slip surface location is only related to the 
dimensionless parameter λc, ϕ = c/(γhtanϕ), and the sliding 
surface depth increases with λc, ϕ . This indicates that a 
decrease in cohesion leads to a reduction in slip surface 

 
Fig. 8  Frequency distribution of the discretized cohesion 
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depth, while a decrease in internal friction angle leads 
to an increase in slip surface depth. Therefore, the slope 
failure consequence decreases with the increase in the 
coefficient of variation of the cohesion and increase with the 
increase in the coefficient of variation of the internal 
friction angle. 

5  Conclusions 
In order to consider the spatial variability of soils 

in the slope stability analysis, the paper improves the 
discrete mechanism of the upper limit analysis of the 
slope by combining it with the KL expansion method of 
random field dispersion, which can consider the influence 
of the spatial variability of the soil friction angle on the 
position of the slip surface when generating the velocity 
interrupted surface. On this basis, an optimization algorithm 
coupling subset simulation (SS) and strength reduction 
method is proposed, and the slope stability analysis is 
carried out using FORM and SS based on the optimization 
algorithm respectively, and the relationship between the 
slope reliability index and the failure consequence and 
the coefficient of variation of strength parameters are 
obtained. The main conclusions of the paper are as follows. 

(1) The discrete mechanism of slope upper limit 
analysis can be conveniently incorporated with random 
field method for reliability analysis of slopes with spatially 
variable soil. 

(2) SS based on the optimization algorithm can end 
the bisection calculation process of strength reduction 
coefficient in advance when the conditions are satisfied, 
and improve the computational efficiency of SS to a certain 
extent. 

(3) The slope reliability indexes obtained by FORM 
and SS are close to each other, whereas the slope failure 
consequences obtained by FORM are generally smaller 
than the corresponding values of SS. 

(4) The slope reliability index decreases with the 
increase of the coefficients of variation of internal friction 
angle and cohesion, among which the reliability index is 
more sensitive to the change of the coefficient of variation 
of internal friction angle. 

(5) In the log-normal random fields, the slope failure 
consequence decreases with the increase of coefficient 
of variation of cohesion and increases as the coefficient 
of variation of internal friction angle increases. 
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