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The phase field numerical manifold method for crack propagation in rock 
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430071, China 
2. University of Chinese Academy of Sciences, Beijing 100049, China 
3. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China 
 
Abstract: Fracture is one of the most common failure modes of materials and components and greatly restricts engineering design. 
Understanding of the crack propagation and evolution of rock and other engineering materials is of great significance to engineering 
construction. For the current numerical methods there are more or less limitations when analyzing the evolution of cracks, such as the 
mesh dependence of the crack path, the difficulty to deal with crack bifurcation and merging by the classic fracture criterion. In recent 
years, the phase field method (PFM) has been widely used in simulating crack growth. A phase field numerical manifold method (PFNMM) 
makes use of the advantages of the phase field method in simulating crack propagation and those of the numerical manifold method (NMM), 
is proposed for crack growth in rock. The implementation details of the proposed numerical model are presented. Several benchmark 
examples, including notched semi-circular bend test and Brazilian disc test, are adopted to validate the proposed numerical approach. 
After that, the multi-crack propagation process with different rock bridge inclination angles under uniaxial compression is simulated, 
which is in good agreement with the results derived from laboratory and PFC. And the results indicate that the PFNMM has broad 
application prospects in simulating crack growth of rock. 
Keywords: phase field method; variational fracture; numerical manifold method; crack propagation 
 

1  Introduction 

After a long period of geological tectonic action, 
numerous discontinuities with different scales and dis- 
tributions have developed inside rock, which greatly reduce 
the mechanical properties of rock mass and increase the 
difficulty of engineering construction. The research shows 
that the failure of rock engineering is usually caused by 
the propagation and coalescence of cracks inside the rock 
mass. Therefore, the prediction of crack propagation process 
in rock by numerical methods has always been a research 
hotspot of scholars around the world. 

Nowadays, the common numerical methods for 
simulating crack propagation include finite element 
method (FEM), extended finite element method (XFEM), 
and numerical manifold method (NMM). The early 
methods used in FEM to solve discontinuous problems 
mainly include equivalent continuum models[1] and joint 
elements or interface elements, such as the no-thickness 
joint elements proposed by Goodman et al.[2]. However, 
FEM needs constantly remeshing and mapping data when 
simulating crack growth, which increase the computational 
difficulty. In order to overcome the shortcomings of FEM 
in simulating cracks, Belytschko et al.[3−4] proposed XFEM 
to simulate crack propagation. XFEM uses the level set 
method to track cracks, avoiding mesh reconstruction 

in FEM. However, for the complex multi-crack problems, 
especially the three-dimensional crack propagation 
problems, it is difficult for XFEM to track the cracks by 
the level set method. Shi[5] proposed NMM in 1991. The 
strengths of NMM lie in scaling and cutting, where the 
scaling technique is able to reproduce local properties 
and the cutting technique is used to define discontinuities. 
Therefore, NMM can uniformly deal with continuous/ 
discontinuous problems and is used to simulate crack 
propagation and other aspects. 

Wang et al.[6] used NMM for the first time to simulate 
rock crack growth, and simulated the single crack growth 
and crack propagation problem under tension and com- 
pression. Peng[7] simulated the dynamic crack propagation 
problem with the help of NMM. Zhang et al.[8] constructed 
a high-order NMM for simulating crack propagation. At 
the same time, Zhang et al.[9] introduced the crack tip 
asymptotic field into the NMM, and established a cal- 
culation method for the interactive integration of the stress 
intensity factor. Ning et al.[10] adopted the Mohr-Coulomb 
criterion as the criterion for crack propagation and used 
NMM to simulate problems such as slope instability. 
Zheng et al.[11] established a meshless NMM based on 
moving least squares and simulated multi-crack propagation. 
Meanwhile, Zheng et al.[12] provided a simple calculation 
method of numerical integration with 1/r singularity 
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function and a more concise description of the progressive 
displacement field at the tip of a kink crack. 

In recent years, the simulation of crack propagation 
by the phase field method has attracted great attention 
from scholars around the world. The phase field method 
for simulating cracks in brittle materials can be traced 
back to the fracture variational theory proposed by Francfort 
et al.[13]. Subsequently, Bourdin et al.[14−15] proposed the 
crack regularization theory, making the phase field method 
widely used to simulate various crack propagation problems. 
Miehe et al.[16−17] proposed the strain spectrum decom- 
position method and the alternate iteration method, which 
further promoted the phase field method in simulating 
crack propagation. However, the current phase field 
methods all solve the crack propagation problem under 
the finite element framework. The phase field numerical 
manifold method proposed in this paper combines the 
advantages of the NMM and the phase field method to 
simulate the crack propagation problem in rocks. 

2  Fracture phase field theory 

2.1 Energy minimization theory 
In order to better describe the phase field method, 

a linear elastic solid ( {2, 3})nΩ R n⊂ ∈ is taken as the 
research object, as shown in Fig.1. There is a crack Γ  
in the problem domain Ω , and the crack width is controlled 
by l. The problem domain boundary is divided into natural 
boundary Ω∂N and essential boundary Ω∂E , and they 
satisfy Ω Ω= Ω∂ ∪ ∂ ∂N E , Ω Ω=∂ ∩ ∂ ∅N E . There is a 
fixed displacement constrain u  on Ω∂E . At the same 
time, the solid Ω is subject to the combination of body 
force b and surface force f. According to the variational 
fracture theory proposed by Francfort et al.[13], the energy 

( , )Π Γε of the system consists of strain energy e ( , )Ψ Γε  
and crack surface energy s ( )ψ Γ . That is 

( ) ( )e s, , ( )Π Γ =Ψ Γ Ψ Γ+ε ε                  （1） 

where ε is the strain tensor under the assumption of small 
deformation. 

In order to reflect the anisotropy of rock materials, 
the strain spectrum decomposition model proposed by 
Miehe et al.[16−17] is adopted. In this model, the strain 
energy is decomposed into positive strain energy ( )ψ + ε  
and negative strain energy ( )ψ − ε . And the positive 
strain energy dissipates with the crack propagation. 

( )e \
, ( ) ( ) + ( ) dΨ ψ ψ+ − =  Ω Γ
Γ g Γ Ωε ε ε        （2） 

where ( )g Γ  is the dissipation function; \Ω Γ is the region 
in the problem domain that doesn’t contain cracks. 

 

Fig. 1  The linear elastic solid Ω containing a preexisting 
crack Γ 

 
2 2( ) = tr [ ] / 2 tr[ ]ψ λ μ±

± ±+ε ε ε                 （3） 

where λ, μ are the Lame constants. 
++ −=ε ε ε                                 （4） 

3

1
= i i i

i
ε± ±

=
  ⊗ n nε                          （5） 

with 
x x x±  := ( + | |) / 2                          （6） 

The crack surface energy s ( )ψ Γ is expressed by 

s c( ) dψ Γ Γ= ΓG                           （7） 

where cG is the critical energy release rate. 
The variational fracture theory expounds the crack 

propagation process from the viewpoint of energy. It is 
believed that the crack propagation of brittle materials 
under the action of external force is a process in which 
the external force potential energy ( )P u  is converted 
into the strain energy e ( , )Ψ Γε  stored in the elastic body 
and the crack surface energy s ( )Ψ Γ  required for the 
formation of new cracks. The crack propagation mechanism 
(crack initiation time, propagation direction, propagation 
length, etc.) all boils down to the fact that the real dis- 
placement field u and the crack field Γ  among many 
permissible displacements and permissible cracks minimize 
the total energy of the system. That is 

{ }* *( , ) Arg min ( , ) ( )Γ Π Γ P= −u uε            （8） 

where ( )P u  is the external force potential energy. 

( ) d d
∂

= +  
NΩ Ω

P Ω su b u f u                 （9） 

However, the biggest difficulty of energy minimization 
theory lies in the accuracy and appropriacy of description 
of cracks Γ . 
2.2 Smeared crack model 

There is an infinitely long rod with crack, as shown 
in Fig.2(a). The crack filed ( ) [0,1]d x ∈  is now introduced 

l 

Ω 

=u u

Г 

f 
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to describe the crack. ( ) 1d x =  means complete rupture, 
while ( ) 0d x =  means the material is intact. ( ) (0,1)d x ∈  

indicates that the material is in a damaged state. If a 
discontinuous method is used, it can be described by a 
δ  function, as shown in Fig.2(b). Discontinuous cracks 
correspond to the real situation and are also called sharp 
cracks or explicit cracks. Miehe et al.[17] proposed to 
approximate the real crack in the form of an exponential 
function with the help of the idea of continuity. That is 

 

(a) An infinitely long rod 

 

(b) Sharp crack 

 

(c) Smeared crack 
Fig. 2  Sharp crack and smeared crack 

 
| |

( ) e
−

=
x
ld x                               （10） 

where l is the crack width, as shown in Fig.2(c). The 
smaller the crack width l, the narrower the crack, and 
the closer the crack is to the real crack. In this case, the 
crack is called an implicit crack or a smeared crack. When 

0l → , the exponential function approximates the δ  

function. That is, smeared cracks are transformed into 
sharp cracks. 

Equation (10) is the solution when the functional (11) 
takes a stationary value under the constraint of Eq.(12). 

2 2 21( ) ( )d
2

′= +l Ω
Γ d d l d Ω

l
                （11） 

(0) 1
s.t.

( ) 0
d
d

=
 ±∞ =

                           （12） 

Therefore, the functional formula (11) is used to 
describe the crack, where ( )lΓ d  is denoted as the crack 
surface function. d′ is the derivative of the crack phase 
variable d with respect to space. With equation (11) 
substituted into Eq.(7), the crack surface energy s ( )Ψ Γ  

can be re-expressed as 

2 2 2
s c

1( ) ( )d
2Ω

= Ω′+Ψ Γ G d l d
l

             （13） 

In order to distinguish sharp cracks and smeared 
cracks, the energy ( , )Π Γε  after the dispersion descrip- 
tion is updated to ( , )lΠ dε : 

( , ) ( ) ( ) + ( )dl Ω Γ
Π d g Γ Ωψ ψ+ −= + \

ε ε ε  

2 2 2
c

1 ( )d
2

′+ΩG d l d Ω
l

                     （14） 

Linse et al.[18] proved that 0l → , ( , ) ( , )Π d Π Γ→ε εl . 
2.3 Governing equation 

According to the principle of virtual work, the first- 
order variation of Eq.(9) can be obtained to obtain the 
virtual work of external force extWδ : 

N
ext d dδ δ δ

∂
=   

Ω Ω
W Ω+ sb u f u             （15） 

Meanwhile, the first-order variation of Eq.(14) is taken 
to obtain the virtual work of internal force: 

int
( , ) ( , )δ δ δ∂ ∂

= +
∂ ∂
l lΠ d Π dW d

d
ε εε
ε

          （16） 

int d 2(1 ) ( )dδ δ δ += − − + \


Ω Γ Ω
W Ω d dΨ Ωσ ε ε  

c
1( )dδ δ∇ ∇ + 

Ω
G l d d d d Ω

l
                （17） 

Because of ext int 0W Wδ δ− =  

d d dδ δ δ
∂

− − +  \
  

NΩ Γ Ω Ω
Ω Ω sσ ε b u f u  

2(1 ) ( )dδ +− − +Ω d dΨ Ωε    

c
1 d 0δ δ ∇ ∇ + 

  
Ω

G l d d d d Ω=
l

             （18） 

According to the integral by parts and the Gaussian 
formula, for any δu and δd, Eq.(18) holds. Therefore, 
the displacement field and phase field governing equations 
are obtained respectively: 

0 in Ω∇ + =        bσ                        （19） 
on NΩ∂n = f       σ                        （20） 

on EΩ∂u = u                               （21） 

c
c2 ( ) 2 ( ) in+ + + − Δ = 

 

G Ψ d G l d Ψ     Ω
l

 ε ε      （22） 

0d≥                                   （23） 

3  Spatial discretization and solution 

3.1 Phase field numerical manifold method 
The displacement field and phase field local field of 

each physical slice are approximated using constant terms. 
That is 

h =i iu u                                  （24） 

1 

0 

d(x) 
l = 1.0 
l = 0.8 
l = 0.5 

1 

0 

d(x) 
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h =i id d                                  （25） 

where iu and id are the local approximation coefficients 
of the displacement field and the phase field on the ith 
physical patch, respectively. Then the global approximation 
of the displacement field 

hu  in the problem domain Ω  
and of the phase field 

hd  is expressed as 
h

u=u N u                                （26） 
h

d=d N d                                （27） 

with 

31 2
u

31 2

00 0
0 0 0

φφ φ
φφ φ

 
=  
 

N              （28） 

[ ]d 1 2 3φ φ φ=N                         （29） 

iφ  is the weight function of the ith physical patch. 
u and d are local approximations to the physical slice, 
respectively. That is 

h h h
1 2 3[ ]=u u u u                         （30） 
h h h

1 2 3[ ]= d d dd                         （31） 

The strain and phase field gradient are respectively 
discretized as 

u=ε B u                                 （32） 

d=d B d∇                                （33） 

with 

u u u=B L N                               （34） 

d d d=B L N                               （35） 

uL and dL are respectively expressed as 

u

0

0

 ∂
 

∂ 
 ∂=  ∂ 
 ∂ ∂
 ∂ ∂ 

x

y

y x

L                            （36） 

d

∂ 
 ∂ =

∂ 
 ∂ 

x

y

L                                （37） 

Substituting Eq.(26) and Eq.(27) into the weak forms 
of Eq.(19) and Eq.(22), we get: 

u u=K u R                                （38） 

d d=K d R                                （39） 

where uK and dK are the global stiffness matrices of the 
displacement field and the phase field, respectively. That 
is 

T 2
u u p u{[(1 ) ] } dnΩ

d k Ω= − + +K B D D B        （40） 

N

T T
u u ud d

∂
= + Ω Ω

s ΩR N f N b                （41） 

T Tc
d c d d d d2 ( ) dψ +  = + +    
Ω

GG l Ω
l

εK B B N N  （42） 

d d2 ( )dψ += Ω ΩεR N                       （43） 

Equations (38) and (39) can be solved iteratively by 
the Newton-Raphson method. 

1
1 u u[ ]−

+ = + n n
n nu u K r                        （44） 

1
1 d d[ ]−

+ = + n n
n nd d K r                        （45） 

where ur and dr are the residuals of the displacement 
field and the phase field, respectively. That is 

N

T T 2 T
u u u ud d [(1 ) ] d

∂
= + − − +  Ω Ω Ω

s Ω d k Ωσr N f N b B  

                                       （46） 
T

d d c d d2 ( )d {ψ += − + Ω Ω
Ω G l dεr N B B   

Tc
d2 ( ) }dψ + +  

G d Ω
l

ε N                    （47） 

3.2 Verification—pure shear test of square plate with 
cracks 

The square plate test with a preset crack is a classic 
example of crack propagation simulated by the phase 
field method. In order to verify the feasibility of simulating 
crack propagation of the method proposed in this paper, 
the phase field numerical manifold method is used to 
simulate the process of crack propagation till failure via 
this example. As shown in Fig.3(a), the side length of 
the square plate is 1 mm, and there is a preset horizontal 
crack 0Γ  with a length of 0.5 mm at the left half-height 
of the square plate. The square plate is fixed at the bottom 
and subjected to the horizonal right load at the top, leaving 
the left and right sides free. Fig.3(b) shows the meshing 
of the numerical manifold method. To reduce the com- 
putation cost, the meshes are refined only in areas where 
cracks are likely to grow. The parameters are chosen as 
following: elastic modulus E = 210 kN /mm2, poisson's 
ratio ν = 0.29. The critical energy release rate Gc = 2.7× 
10−3 kN /mm, and the crack widths are taken as l = 0.02 mm 
and l = 0.007 5 mm, respectively. Displacement increment 
step Δu = 1×10−5 mm. 

Figures 4 and 5 describe the crack propagation paths 
under different displacement loads for l = 0.02 mm and 
l = 0.007 5 mm, respectively. The crack propagation paths 
of both crack widths agree well with those obtained by 
Miehe et al.[17]. By comparison, it is found that the pro- 
pagation paths of the two crack widths are almost the 
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(a) The geometry of model 

  
(b) The discrete model 

Fig. 3  Test model of pure shear (unit: mm) 

  
(a) u = 1.02×10−2 mm         (b) u = 1.3×10−2 mm 

 
(c) u = 1.56×10−2 mm 

Fig. 4  The propagation path of crack at different 
displacements for l = 0.02 mm 

    
(a) u = 1.10×10−2 mm            (b) u = 1.32×10−2 mm 

 
(c) u = 1.60×10−2 mm 

Fig. 5  The propagation path of crack at different 
displacements for l = 0.007 5 mm 

 
same. But the smaller l is, the closer the obtained crack 
path is to the real crack. Theoretically, when the crack 
width 0l → , the simulated crack path approximates 
the real crack. During the crack propagation process, 
the load−displacement curves are shown in Fig.6. The 
smaller the crack width l, the larger the maximum shear 
force the square plate can withstand.  

 

Fig. 6  Load−displacement curves of pure shear 

4  Example of rock crack propagation 

4.1 The notched semi-circular bend test 
The notched semi-circular bend test is a common test 

method to obtain I-type fracture toughness of rock. The 
phase field numerical manifold method is used to simulate 
the experiment. And the ability of the phase field numerical 
manifold method simulating the crack propagation of 
rock is verified by comparing the crack paths simulated 
by the PFNMM and obtained in the experiment.  

The geometry model and the mesh model are shown 
in Fig.7(a), respectively. A crack of length a is prefabricated 
at the center of the bottom edge of the disc, and a is chosen 
by 5, 10, and 15 mm, respectively, as shown in Fig.7(b)− 
7(d). Elastic modulus E = 90 kN /mm2, Poisson's ratio 
ν = 0.21, Gc = 5.6×10−6 kN /mm, l = 0.45 mm, Δu = 
5×10−6 mm. 

Figure 8 shows the crack paths obtained by the phase- 
field numerical manifold method and experiments, 
respectively. It can be seen that the prefabricated cracks 
all propagate upward in the vertical direction. The crack 

0.5 

0.5 

0.5 0.5 

u 

Г0 

0.000 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
u /mm 

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F 

/k
N

 
l = 0.007 5 mm 
l = 0.020 0 mm 
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(a) The geometry of model(unit: mm) 

 

(b) The discrete model for a = 5 mm 

 

(c) The discrete model for a = 10 mm 

 

(d) The discrete model for a = 15 mm 

Fig. 7  The models of notched semi-circular bend test  

 
(a) The crack path for a = 5 mm    (b) The crack obtained by Lee et al.[19] 

 

(c) The crack path for a = 10 mm  (d) The crack obtained by Zhao et al.[20] 

 

(e) The crack path for a = 15 mm  (f) The crack obtained by Zhao et al.[20] 

Fig. 8  The crack propagation of notched semi-circular 
bend test for different lengths of preset crack 

propagation path simulated by the phase field numerical 
manifold method is roughly consistent with the crack 
propagation trend obtained by the experiment. However, in 
local details, there are some differences with the experiment 
results because the calculation model is idealized. Therefore, 
the numerical simulating cannot completely replace the 
experiment. The inhomogeneity and anisotropy of the 
real rock mass raise high demands on the calculation 
model and numerical method. 

Figure 9 records the load-displacement curves during 
crack propagation. It can be seen that the load−displace- 
ment curve increases linearly before the crack initiation 
but decreases rapidly after the crack initiation until the 
crack is completely penetrated. Half-disks with different 
pre-crack lengths can withstand different peak loads. The 
longer the prefabricated crack is, the smaller the peak load 
the half-disk can bear. 

 
Fig. 9  Load−displacement curves of notched semi-circular 

bend test 
 
4.2 The Brazilian disc test 

The Brazilian disc test is widely used in the engineering 
field to indirectly determine the tensile strength of brittle 
rocks. As shown in Fig.10, the Brazilian disk sample with 
prefabricated cracks has a diameter of 50 mm, an initial 
crack length of 30 mm, and an angle of 90º between the 
crack and the horizontal direction. 

There is a compression platform at the upper and 
lower ends of the disc, and the load is applied through 
the compression platforms at both ends. In this example, 
the mechanical parameters of the rock sample are E = 
10 kN /mm2, ν = 0.25, Gc = 2.5×10−5 kN /mm, l = 1 mm, 
Δu = 5×10−5 mm. 

Figure 11 shows the crack paths obtained by the phase 
field numerical manifold method and by the experiment, 
respectively. Compared with the experimental results, it 
can be seen that the crack path obtained by the phase field 
numerical manifold method is in good agreement with 
the experimental results. Fig.12 records the change process 
of the load-displacement curve of the Brazilian disc during 

19 19 
32 32 

a 

u

0.00
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F 
/k

N
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loading. From this figure, it can be seen that the force and 
displacement are linearly related until the crack propagates. 
At the initial stage of crack propagation, the force−dis- 
placement curve does not drop immediately but appears 
approximately horizontal. This shows that the load on 
the disk remains basically unchanged even though the 
crack starts to propagate. This shows that the friction 
between the crack surfaces bears part of the load at this 
moment. As the load continues increasing, the crack 
gradually expands and coalesces, and the force−dis- 
placement curve drops rapidly. 

  

(a) The geometry of model(unit: mm)     (b) The discrete model 

Fig. 10  The models of Brazilian disc with a crack 

 

Fig. 11  The crack paths from PFNMM and experiment[21] 

 

Fig. 12  Load−displacement curves of Brazilian disc test 
 

4.3 Growth of multiple cracks 
The first two examples only consider the case of single 

crack growth, and thus the phase field numerical flow 

method is used to simulate the growth of multiple cracks. 
There are two parallel prefabricated cracks in the rectangular 
rock sample. The two cracks have a spacing of 20 mm 
and are symmetrical about the centroid of the rectangular 
rock sample. The crack angle is α = 45º, and the rock 
bridge angle is denoted as β, as shown in Fig.13(a). The 
crack propagation path under different rock bridge in- 
clination angles is simulated by the phase field numerical 
manifold method, for which β is equal to 0º, 45º, and 90º, 
respectively. The grid models of different rock bridge 
angles are shown in Fig.13(b) to 13(d). In order to compare 
with the test results[22], the calculation parameters selected 
for reference test materials are shown in Table 1. 

    

(a) Geometry model (unit: mm)       (b) Discretized model forβ = 0º 

     

 (c) Discretized model for β = 45º   (d) Discretized model for β = 90º 

Fig. 13  The models of different rock bridge  
inclination angles 

 

Table 1  The material parameters 
Elastic modulus 
/(kN·mm−2) Poisson's ratio Critical energy release 

rate /(kN·mm−1) 
Crack width 

/mm 

0.67 0.31 1.4×10−3 0.015 

R = 50
30 

u 

u 

β

α

190 

100

30

20

0.00 0.02 0.04 0.06 0.08 0.10 0.12
u /mm 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

F 
/k

N
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(a) β = 0º  

 

(b) β = 45º 

 

(c)  β = 90º 
Fig. 14  The crack propagation paths of different rock 

bridge inclination angles 
 

The crack propagation paths under three different 
rock bridge inclination angles are shown in Fig.14. In 
order to verify the path simulated by the phase field 
numerical manifold method, the comparison with the 
PFC and experimental results were carried out respectively. 
As can be seen from Fig.14(a), when β = 0º, the crack 
propagation paths obtained by the phase field numerical 
manifold method and particle flow code (PFC) simulations 
are consistent[22], with airfoil cracks generated at both 
ends of the prefabricated crack in these two cases. With 
the increase of the displacement load, the airfoil cracks 
continue expanding, and the airfoil cracks at the rock 
bridge end coincide with the prefabricated cracks. Due 
to the lack of test results of β = 0º in the study of Yang 
et al.[22], it cannot be compared with the test. Fig.14(b) 

successively shows the crack propagation paths obtained 
by the phase field numerical manifold method, PFC and 
experiment at β = 45º. It can be seen that the airfoil cracks 
at the end of the rock bridge intersect. When β = 90º, the 
crack propagation paths obtained by the three methods 
are shown in Fig.14(c). From the perspective of airfoil 
crack propagation, when β = 0º, the propagation angle 
is the largest, gradually approaching a right angle and 
extending vertically to both ends of the specimen. That 
is, it is almost parallel to the maximum principal stress, 
showing the characteristics of tensile failure. With the 
increase of β, the airfoil crack propagation angle gradually 
decreases to about 45º, showing the characteristics of 
compressive shear failure. It can be seen that the phase 
field numerical manifold method can better simulate the 
characteristics of the rock transition from tensile failure 
to compressive shear failure with the gradual increase 
of the rock bridge angle. 

5  Conclusion 

In recent years, the advantages of the phase field 
method in simulating crack growth have attracted great 
attention from scholars around the world. In this paper, 
it is proposed to solve the phase field problem under the 
framework of the numerical manifold method and to unify 
the advantages of both. The problem of rock crack pro- 
pagation is analyzed by numerical examples. The results 
show: 

(1) The phase field numerical manifold method can 
simulate the crack propagation path well, which is in good 
agreement with the experimental results. 

(2) The phase field numerical manifold method is 
used to simulate the Brazilian disk test and the notched 
semi-circular bend test. The load−displacement curve 
during crack propagation is obtained. When the load is small, 
crack initiation does not occur, and the load−displacement 
curve is linear at this moment. The load−displacement 
curve drops rapidly as the load gradually increases until 
it reaches the peak value. The load peaks when the crack 
starts to propagate. With the crack propagation and coale- 
scence, the mechanical properties of the rock decrease 
rapidly until failure. The load−displacement curve reveals 
the elastic-brittle failure process of rock. 

(3) The phase field numerical manifold method is 
used to simulate the influence of different rock bridge 
inclination angles on crack propagation. From the per- 
spective of airfoil crack propagation, when β = 0º, the 
propagation angle is the largest, and it gradually approaches 
a right angle and extends vertically to both ends of the 
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specimen. It is almost parallel to the maximum principal 
stress, showing the characteristics of tensile failure. With 
the increase of β , the airfoil crack propagation angle 
gradually decreases to nearly 45º, showing the charac- 
teristics of compression-shear failure. It can be seen 
that the rock changes from tensile failure to compression 
shear failure with the gradual increase of the rock bridge 
inclination angle β. The phase field numerical manifold 
method is used to simulate the transition from tensile 
crack to compressive shear crack well. 

(4) The research results show the feasibility of the 
phase field numerical manifold method in studying the 
failure law of rock materials. Due to the idealization of the 
computational model, the calculation cannot completely 
replace the experiment. The inhomogeneity and anisotropy 
of the real rock mass raise higher requests on the calculation 
model and numerical method. 
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