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Nonlocal peridynamic method for porous media seepage simulation 
 
MA Peng-fei,  LI Shu-chen,  WANG Xiu-wei,  ZHOU Hui-ying,  WANG Man-ling,  ZHAO Yi-min 
Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China 

 
Abstract: Based on the establishment of peridynamic nonlocal porous media seepage model, several kernel functions reflecting the 
degree of nonlocal effect are introduced to improve the calculation accuracy, and the peridynamic permeability coefficients 
corresponding to different kernel functions are derived. In the two-dimensional seepage model, the Weibull-distributed permeability 
coefficient model and the fracture network seepage model are established to realize the heterogeneous seepage in porous media 
matrix and fracture, respectively, which make up for the shortage of classical peridynamic model that cannot well simulate the 
heterogeneous seepage in porous media such as rock and soil. Different kernel function models are tested in simulating 
one-dimensional seepage problems, and the influence of kernel functions on simulation results is analyzed. The results show that the 
improved model can well converge to the theoretical solution, and the polynomial kernel function has the highest convergence 
accuracy relative to other kernel functions. Then, the polynomial kernel function is introduced into the two-dimensional model, and 
the corresponding two-dimensional permeability coefficient is derived. The proposed heterogeneous seepage model is employed in 
the simulation of two-dimensional seepage in porous media with and without fracture, and the simulation results show that the 
proposed model can well simulate the heterogeneous seepage process in rock materials, proposing a wide application prospect in 
porous media seepage simulation. 
Keywords: porous media; peridynamics; nonlocal method; seepage simulation 
 

1  Introduction 

Numerous natural pores and structural fractures exist 
in porous media such as soil and rock, providing the 
space for groundwater transportation and storage[1–3]. 
In recent years, with the increase of high slope and 
underground tunnelling projects, the engineering disasters 
caused by groundwater have been frequently encoun- 
tered[4–5], resulting in significant economic loss. The 
seepage features of groundwater in porous media are 
hot topics in soil mechanics and rock mechanics[6–9]. 
The pores and fractures that cannot be quantified in 
porous media have a great influence on the seepage 
characteristics, making it very difficult to investigate 
the seepage problems by theoretical methods. Meanwhile, 
there are also some limitations in investigating the 
seepage problems by experimental approaches, such as 
long cycles, high costs, and difficulty in experimental 
parameters determination. With the development of 
computer technology, more and more researchers adopt 
numerical simulation to investigate the seepage features 
of porous media. 

The continuous medium model based on the flow 
equivalence principle evenly distributes the permeabilities 
of pores and fractures in the continuous medium, which 
is suitable to simulate the seepage in the medium with 
few macro fractures[10–11]. The fracture network model 
regards the fluid flow in fractures as pipeline flow, 
which has some advantages in simulating the fracture 
seepage[12–13]. By combining the advantages of the above 
two models, the dual media model is adopted, where the 
permeabilities of fracture and matrix are simulated with 

dual meshes, respectively. The pore medium stores water 
and the fractured medium transports water, which matches 
the real situation of heterogeneous porous media seepage 
well[14]. 

The peridynamic method, which describes the f 
physical field by integral formulation, can avoid the 
numerical singularity around the crack tip when employing 
the differential formulation[15–16], so that has been 
widely applied in structure failure simulations[17–18]. 
The diffusion problems such as thermal conduction 
and seepage that have non-local features can also be 
described by peridynamics. Gerstle et al.[19] first 
established the peridynamic model for thermal and 
electrical conduction and proposed its analytical and 
numerical solution. Bobaru et al. proposed the non- 
steady thermal diffusion equation based on Fourier's 
law and energy conservation law and studied the thermal 
conduction of fractured medium[20]. Wang et al.[21] 
proposed the conventional peridynamic thermal diffusion 
equation by employing the Euler equation in the 
Lagrange coordinate system. Liu et al. [22] investigated 
the temperature field variation in functional gradient 
material under thermal load using the peridynamic model. 
For the porous media seepage problems, Jabakhanji et 
al.[23] proposed a peridynamic model for moisture 
diffusion in homogenous unsaturated soil and determined 
the humidity flux expression formulation and the 
relationship between hydraulic conductivity and the 
traditional Darcy’s permeability. Based on the classical 
Biot’s pore pressure theory, Zhou et al.[24] established 
the fractured rock mass seepage model and hydraulic 
fracturing model based on the classic Biot pore theory 
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using the peridynamics method. 
In the peridynamic diffusion theory, the physical 

quantities at the discrete points interact with each other 
within a certain distance and no longer interact if they 
exceed the critical value. In nonlocal theory, the inter- 
action becomes weaker with the increase of distance 
between two material points, and the calculation 
accuracy will be affected if the relationship between 
interaction degree and distance is not considered. In 
addition, the micro-fractures that cannot be quantified 
will lead to the heterogeneity of porous media such as 
soil and rock, and the non-uniform diffusion cannot be 
well reflected by the homogeneous method. 

Based on the existing research work, the peridynamic 
diffusion equation for porous media seepage is established 
in the present paper, where, the kernel functions that 
reflect the nonlocal effect are introduced to improve 
the calculation accuracy. The permeability coefficients 
corresponding to different kernel functions are derived, 
and the heterogeneous seepage model for porous media 
is established based on the Weibull distribution theory 
and the fracture network model. The established model 
is employed to simulate the porous media seepage 
process, and the simulation results are compared with 
theoretical solutions to verify the effectiveness of the 
proposed method. Meanwhile, the seepage processes 
in heterogeneous matrix and fracture are simulated, 
and the results show that the proposed method is 
feasible for porous media seepage simulation. 

2  Seepage equation 

2.1 Basic equations 
As shown in Fig. 1, the porous medium domain is 

discretized into material points where water is assumed 
to be stored. The volume of material point x is d xV , 
and the water head at this point is  H x . The moisture 
exchange occurs between adjacent material points 
within an influence radius of  . For example, material 
point x  is the interaction point of material point x, 
and they are connected with the bond xx  where 
water can be transported. The transported water in unit 
time and unit water head difference can be represented 
by the peridynamic hydraulic conductivity density 
 ,C x x , which can be derived from the peridynamic 

permeability coefficient  ,k x x [23] 

   ,
,

k x x
C x x

xx


 


                         （1） 

If there is a water head difference between material 
points x and x , the water content increments at both 
ends of the bond xx  can be calculated by[23] 

       
m , , d dx x

H x H x
V x x k x x V V

xx 

     


   （2） 

       
m , , d dx x

H x H x
V x x k x x V V

x x 

    


   （3） 

 
Fig. 1  Interaction between material points 

 

where  m ,V x x  and  m ,V x x  denote the water 
content increments at material points x and x , 
respectively. Since the bond xx  cannot store water, 
the water content increments at both ends meet 

   m m, ,V x x V x x    .  ,k x x  is the peridynamic 
permeability coefficient. According to Eqs. (2) and (3), 
 ,k x x   ,k x x , which indicates that the permeability 

coefficients along the opposite directions of one bond 
are the same. 

Since the nonlocal property of peridynamics, the 
change of the moisture content at material point x 
should be equal to the total diffusion of other material 
points in the neighborhood domain Hx, considering the 
external source  S x [23] 

         , d
x

xH

H x H xx
k x x V S x

t xx




     
   （4） 

where t is the time;  x  indicates the volume of 
water stored at material point x. By integrating Eq. (4) 
within the domain R, the moisture content change in 
the domain can be obtained[23]: 

       

 

d ,

      d d d

x x x

x

xH H H

x x xH

H x H xx
V k x x

t xx

V V S x V





     




  



  （5） 

The first integral term on the right side of the 
equation can be rewritten as[23] 

   

   

,
d d

,
d d

x x

x x

x xH H

x xH H

k x x H x
V V

xx

k x x H x
V V

xx





 







 

 

                （6） 

Performing the variable substitution for the second 
term in formula (6), the results of formula (6) are 0 as 
the equal permeability coefficients. Thus, Eq. (5) can 
be simplified as 

   d d
x x

x xH H

x
V S x V

t




                    （7） 

Equation (7) indicates that the change of total 
moisture content within the interaction region of 
material point x is only related to the external term and 
the total moisture in the region remains unchanged. 

Bond for water conduction

Hx



x 

x
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2.2 Nonlocal permeability coefficient 
According to the nonlocal theory, the relationship 

between interaction effect and distance has a great 
influence on the calculation result. In order to improve 
the calculation accuracy and stability, Huang et al. [25] 
introduced the kernel function that describes the 
interaction between material points into the mechanic 
model. In this section, based on the previous studies, 
different kernel functions are introduced into the 
nonlocal diffusion model and the corresponding 
permeability coefficients are calculated. 

The relationship between peridynamic permeability 
coefficient  ,k x x  and traditional Darcy’s permeability 
coefficient K is usually determined by assuming the 
amount of water flowing through the unit section area 
is the same. Incorporating the kernel function, the 
following equation is obtained 

       , 0, ,k x x k k g                    （8） 

where   is the relative position;   is the radius of 
neighborhood domain; and  ,g    is the correction 
term with respect to the nonlocal feature, which meets 

   
 

 

   

0

0

, ,

lim , max

lim , 0

lim , d 1

g g

g g

g

g x



 



   

 

 

  





 
 

  


 

 


    

              （9） 

where    is the Dirac Delta function, and the 
proposed seepage model will degenerate to the classic 
seepage model if  ,g   =1. Herein, taking the 
one-dimensional seepage model as an example, the 
expressions of permeability coefficients corresponding 
to the linear type 1g , quadratic type 2g , polynomial 
type 3g  , and cosine type 4g  are derived. 

The seepage model is shown in Fig. 2. The water 
flows to the right side from the left side with a higher 
water head through material point x and section S. The 
left and right sets ( l

xH  and r
xH ) of the neighborhood 

domain ( xH ) of material point x can be defined as  

 l
l l 0x xH x H xx S                      （10） 

 r l
r rx x xH x H x H                       （11） 

 

 
Fig. 2  One-dimensional seepage model[26] 

where, lx  and rx  are the material points located at 
the left and right sides of material point x; lxx  is the 
line segment between the two material points; and S  
indicates the perpendicular plane at material point x.  

The moisture exchange occurs between the material 
point lx  in l

xH  and other surrounding material points. 
Considering water flows through section S from l

xH , 
the material points in r

xH , where the moisture exchange, 
can be denoted as  

 
r

l r l
r l r l,x x xH x H x x x H   ≤             （12） 

As shown in Fig.2, the coordinates of the material 
points at 

r

l
xH  and l

xH  are x  and x , respectively. 
Combining Eq. (5), the total amount of water flux 
(  q x ) flowing through section S at a certain moment 
can be calculated by[26] 

       
l l

r

, d d
x x

x xH H

H x H x
q x k x x V V

x x  

     
    

（13） 
Eq. (13) can be further written as 

       
, d d

x x

x x

H x H x
q x k x x x x

x x







       
    

（14） 
According to classic Darcy’s law, the total amount 

of water flowing through section S is obtained by 

   H x
q x K

x





                         （15） 

Assuming that the hydraulic gradient is linearly 
distributed in the model, namely  H x ax c  , 
where a  and c  are both constants. Eq. (15) can be 
rewritten as 

 q x Ka                               （16） 

Due to the linear hydraulic gradient a , Eq. (14) 
can be rewritten as 

   , d d
x x

x x
q x k x x a x x







                  （17） 

When the kernel function is 1g ,  ,k x x   can be 
formulated as the constant  0,k   multiplied by a 
linear function 1 /  . Substituting  ,k x x   into 
Eq. (17) yields 

   

 

    22

0, 1 d d

0, 1 d d

0,
0, d

2 2 6

x x

x x

x x

x x

x

x

q x k a x x

x x
k a x x

k ax
k a x x















 










       
 

       
 

 
      

 

 

 



 

（18） 
Since Eq. (16) is equal to Eq. (18),  0,k   has 

the form as 

  2

6
0,

K
k 


                             （19） 

If taking the quadratic type 2g , Eq. (17) can be 

S
 

x x x+ x x– 

l
xH r

xH
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rewritten as 

   

       

2

2 2

2

0, 1 d d

2 0,
0, d

3 4

x x

x x

x

x

q x k a x x

x x k a
k a x









   









            

  
  

 



 

（20） 
Since Eq. (16) is equal to Eq. (20),  0,k   has 

the form as 

  2

4
0,

K
k 


                             （21） 

Similar operations can be performed for the 
remaining two types of kernel functions, and the 
results are listed in Table 1. 

 
Table 1  Kernel functions and corresponding modulus 

Kernel 
functions 1g  2g  3g  4g  

 ,g    1



  
2

1


   
 

 
22

1



       
 cos

2



 

 
 

 

 0,k   
2

6K


 

2

4K


 

2

6K


 

 
2

22 2

K



 

 
In this section, the permeability coefficients corres- 

ponding to different kernel functions are derived, and 
the influence of different kernel functions on the 
calculation result will be discussed in section 3. 
2.3 Heterogeneous seepage 

The pores and fractures that cannot be quantified 
in the porous media make the heterogeneous behavior 
of the matrix. In this section, the Weibull-distributed 
matrix permeability coefficient and the fracture network 
seepage model are introduced to simulate the hetero- 
geneous seepage in porous media. 

As shown in Fig. 3, the angle between the horizontal 
axis and the perpendicular direction ( S ) of the section 
S at material point x is  . the corresponding material 
points, have moisture exchange, at each side of material 
point x can be denoted as  ,x r    and  ,x r     in 
the polar form, respectively, where x  and x  have 
the same meaning as the last section and are coplanar 
with material point x. The total amount of water 
flowing along the direction of S  can be obtained 
by[26] 

       

 

02
0

2

,

   cos d d d

rq k x x H x H x

r r

 




  


 



       

 

  
  （22） 

Assuming that the hydraulic gradient distribution 
in the model is   ˆH x ax j c   , where the water 
head difference at  ˆ 1,0j   can be denoted as 

     sinH x H x a r r                    （23） 

Taking the kernel function  , 1g     of the 
permeability coefficient is  ,k x x   as an example, 
Eq. (22) is substituted into Eq. (23) 

 
Fig. 3  Two-dimensional seepage model[26] 

 

     02
0

2

sin cos d d d
r

q ka r r r r
 


    


 



         

（24） 
Equation (24) can be further integrated as 

  31
sin

6
q ka                          （25） 

The water flow calculated by Darcy’s law is  

  sinq Ka                            （26） 

Combining Eq. (29) and Eq. (30) yields 

3

6K
k





                                （27） 

The permeability coefficients corresponding to the 
remaining kernel functions can be obtained with similar 
operations. Due to the different permeability of micro- 
cracks in the porous media, the Weibull-distributed 
permeability coefficient is introduced to describe the 
heterogeneous property of porous media 

 
1

0 0 0

= exp
m m

m u u
f u

u u u

     
    
     

             （28） 

where u is the scale parameter at material points (e.g., 
permeability coefficient); 0u  is the average value of u; 
m is the shape parameter employed in the distribution 
function, and the probability functions with different 
m are shown in Fig. 4. The smaller the m is, the more 
uneven distribution of material point parameters will 
be. In the present paper, the permeability coefficient 
( iK ) of the porous medium is employed for u. According  

 

 
Fig. 4  Probability functions corresponding to different 

shape parameters 
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to Eq. (27), the peridynamic permeability coefficient 

ik  at material point x is obtained, and the mean value 
is used for moisture exchange calculation between two 
material points. 

As shown in Fig. 5, the interaction region is separated 
by a macro fracture, and the interaction forces of the 
broken bonds are equal to 0 (the dashed lines in Fig. 5). 
In this paper, a similar approach is employed in the 
seepage model, where the bonds separated by the 
macro-fracture are indicated as a fracture network 
with a much larger permeability coefficient than that 
of the matrix. Therefore, the seepage in fractures can 
be simulated. The permeability coefficient of fracture 
( fK ) can be determined with classic Darcy’s law, and 
the cubic law is employed to determine the permeability 
coefficient at low Reynolds numbers, namely 

2

f 12

w
K


                                （29） 

where w is the fracture aperture and   is the water 
viscosity. The peridynamic permeability coefficient 

fk can be then determined with Eq. (24). 
 

    
Fig. 5  Regions separated by fracture 

3  One-dimensional seepage simulation 

3.1 Numerical simulation scheme 
To verify the feasibility of the proposed model and 

investigate the influence of different kernel functions 
on the simulation results, a one-dimensional seepage 
simulation is taken as an example. As shown in Fig. 6, 
the length (L) and width (H) of the rock are 1.0 m and 
0.4 m, respectively. The permeability coefficient along 
the horizontal direction is K , and the upper and 
bottom surfaces of the rock are impermeable layers. 
Continuous water pressures LP  and RP  ( L RP P ) are 
applied on the left and right sides of the rock, 
respectively. The initial pore water pressure of the 
medium is set as 0, thus water will flow toward the 
right side from the left side. 

 

 
Fig. 6  One-dimensional steady-state seepage 

This model is discretized into 200 80  computation 
nodes, with the nodal distance x = 0.005 m and the 
interaction radius 3.015 x   . The permeability coef- 
ficient along the horizontal direction is K  0.048 5 m/d, 
and the time step dt  is 0.001 d. The water pressures 
applied on the left and right sides of the model are 55 kPa 
and 15 kPa, respectively. 

The analytical solution of the water pressure 
distribution along the horizontal direction is  

   L R L

x
P x P P P

L
                       （30） 

3.2 Seepage process simulation 
The linear model is employed, and the total time 

step is set as 6 000. The distributions of water pressure 
along the horizontal direction at different times are 
shown in Fig. 7. 

 

 
(a) t = 0.1 d 

 

 
(b) t = 0.4 d 

 

 
(c) t = 1 d 

 

 
(d) t = 2 d 

 

 
(e) t = 6 d 

Fig. 7  Water pressure distribution along the horizontal 
direction 

 
According to the water pressure distribution at 

different times, it is observed that water driven by the 
water head differences at both sides flows toward the 
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middle of the model simultaneously at the initial stage, 
and the seepage area at the left side is larger than that 
at the right side at the same moment. As time increases, 
the water from both sides meets at the middle of the 
model, and flow from left to right due to the higher 
water head at the left side. The simulated seepage 
features are in coincide with the real seepage process, 
validating the feasibility of the proposed method.  

The comparison between the simulated water 
pressures and the analytical solution at different times 
is shown in Fig. 8. Since the larger horizontal pressure 
difference, the seepage process develops rapidly at the 
initial stage. As time increases, the horizontal pressure 
difference gradually decreases, which in turn affects 
the seepage process and eventually the simulated 
water pressure distribution converges to the analytical 
solution. Therefore, the feasibility of the proposed 
peridynamic model is further validated. 

 

 
Fig. 8  Comparison of water pressure distributions between 

simulated results and analytical solution 

 

3.3 Kernel function optimization 
The kernel functions have a great influence on the 

calculation accuracy. Based on the analysis of linear 
kernel function 1g , the seepage processes corresponding 
to the kernel functions of quadratic type 2g , polynomial 
type 3g , and cosine type 4g  can be simulated in the 
same way, and the results are shown in Fig. 9. 

In Fig. 9, the calculation accuracy of the kernel 
function of polynomial type 3g  is better than that of 
other kernel functions. The convergence accuracy of 
the four kernel functions in order is polynomial type 

3g , linear type 1g , cosine type 4g  and quadratic 
type 2g . Overall, the polynomial kernel function is 
employed in subsequent simulations. 

4  Heterogeneous seepage simulation 

4.1 Nonlocal two-dimensional seepage model 
To improve the calculation accuracy, the kernel 

function of polynomial type 3g  is introduced into Eq. 
(28), and the corresponding permeability coefficient k 
can be written as 

 
22

0, 1k k



        
                    （31） 

Substituting Eq. (31) into Eq. (24), the following 
equation can be obtained after integration  

 

 
     (a) t = 0.1 d 

 

 
     (b) t = 1.0 d 

 

 
     (c) t = 6.0 d 

Fig. 9  Influence of kernel functions on simulation results 

 

    34
0, sin

105
q k a                    （32） 

Since Eq. (32) is equivalent to Eq. (25),  0,k   
can be written as 

  3

105
0,

4

K
k 





                          （33） 

In order to verify the feasibility of the proposed 
model, the classic five-point wells network seepage 
problem is employed, and the specific model and 
theoretical solution can be referred to reference [28]. 
As shown in Fig. 10, the geometry of the seepage 
model is L H  1 m  1 m, and the permeability 
coefficient is K. Constant water pressures LP  and 

RP  are applied at the lower-left corner and upper-right 
corner of the model, respectively. The initial medium 
pore water pressure is set to 0, and the surrounding walls 
of the model are impermeable. With the passage of time, 
the water seepage from the lower-left corner to the upper 
right corner.  
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Fig. 10  Two-dimensional seepage problem 

 
The model is discretized into 200 200  computation 

nodes, and the nodal distance and interaction radius are 
the same as those in the last section. The permeability 

 

coefficient is 0.047 5 m/dK  , and the water pressures 
applied on the lower-left corner and upper–right corner 
are LP  90 kPa and RP   90 kPa，respectively. The 
time step size is d 0.001 dt  . The water pressure 
distributions at different times are shown in Fig. 11, 
and the comparison between the simulated water 
pressure distributed on the diagonal line y x  and the 
analytical solution is shown in Fig. 12. 

Figure 11 shows that water gradually seepage in 
the porous medium from the lower-left corner to the 
upper right corner driven by the water pressures applied 
on the corners. With the passage of time, the water 
pressure distribution gradually converges to the 
analytical solution, which validates the feasibility of the 
proposed model. 

 

         
(a) t = 0.2 d                                      (b) t = 0.5 d 

 

         
(c) t = 2.0 d                                     (d) t = 4.0 d 

Fig. 11  Distribution of seepage water pressure 
 

 
Fig. 12  Comparison of water pressure distributions on 

diagonal (y = x) between simulated results  
and theoretical solution 

 
4.2 Inhomogeneous seepage in rock matrix 

Unquantified micro-fractures in the porous media 
lead to heterogeneous diffusion, which can be described 
by the Weibull-distributed permeability coefficient. 

The material point parameter u is set as the permeability 
coefficient (K) of the porous medium, and the distribution 
function is shown as Eq. (34). In addition, the probability 
distribution curves of the permeability coefficient with 
respect to different shape parameters (m=1, 2, and 5) 
are shown in Fig. 13. The distribution of permeability 
coefficient when m=5 is shown in Fig. 14, where the 
heterogeneity of the matrix is clearly presented.  

 
1

0 0 0

exp
m m

m K K
f K

K K K

     
     
     

          （34） 

The geometry model is selected from the lower- 
left part ( L H  0.5 m  0.5 m) of the model in 
section 4.1, and a continuous water pressure P  90 kPa 
is applied at the lower left corner of the model. Taking 
m=1 as an example, the simulation results are shown 
in Fig. 15. 
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Fig. 13  Probability distribution curves of permeability 

coefficient           

 

 
Fig. 14  Weibull-distributed permeability coefficient (m=5) 

 

         
(a) t = 0.2 d                                     (b) t = 1.5 d 

 

         
(c) t = 3.0 d                                    (d) t = 5.0 d 

Fig. 15  Inhomogeneous diffusion process 

 

         
(a) m = 2                                        (b) m = 5 

Fig. 16  Calculation results corresponding to different shape parameters 

 

4.3 Inhomogeneous seepage in fracture 
The permeability of macro fracture is different 

from the matrix. In the peridynamics, the bonds 
separated by fracture can be defined as the fracture 
region with a much larger permeability coefficient, 
while the permeability of intact bonds remains the 
same as the matrix. To verify the seepage process in 
fractures, the rock mass containing cross fractures 

shown in Fig. 17 is employed. The model size and nodal 
distance are the same as those in section 4.1, and the 
fracture permeability coefficient is 0.057 3 m/sK  . 
Since we mainly focus on the water flow in fractures 
in this section, the permeability coefficient of the 
matrix is set to 0. The water pressure of 80 kPa is 
applied on both sides of the model, and the water 
pressure evolution is shown in Fig. 18. 
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Fig. 17  Fracture seepage model 

 
 

 
(a) t = 0.2 s 

 

 
(b) t = 1.5 s 

 

 
(c) t = 3.0 s 

 

 
(d) t = 5.0 s 

 

 
(e) t = 8.0 s 

Fig. 18  Seepage process of cross fractures 
 

In Fig. 18, the peridynamic method can well simulate 
the fracture seepage process. At the initial stage of 
seepage, water gradually flows into the fracture region 
from the boundary. With the passage of time, water 
gradually flows along the fractures and finally meets 
at the middle of the model, which matches reality 
well. 

5  Conclusion 

(1) The peridynamic method is suitable for the 
porous media seepage simulation, and the governing 
equations established by integral forms have a good 
application prospect in the seepage simulation. 

(2) The calculation accuracy of the polynomial 
kernel function is better than that of other kernel 
functions. The simulated results of the benchmark 
problems converge to the analytical solutions, which 
validates the feasibility of the proposed method. 

(3) The Weibull-distributed permeability coefficient 
is suitable for the heterogeneous seepage simulation, 
and the seepage in fractures can be well simulated 
with the fracture network seepage model. 
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