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Abstract: In the reliability analysis of slope stability, the deterministic analysis method is usually used to calculate the safety factor to 
evaluate the stability of slope. However, the inherent spatial variability of rock mass properties cannot be considered and described 
adequately in traditional deterministic method, resulting in the inaccurate calculation of slope failure probability. Based on 
Hoek-Brown criterion and random finite difference method (RFDM), the reliability analysis of slope stability and random response of 
pile are discussed in this paper considering spatial variability of rock mass. The uniaxial compressive strength ci  and material 
constant for the intact rock im  are regarded as random field variables and geological strength index GSI is assumed to be a random 
variable. The results show that the spatial variability of rock mass parameters has a significant effect on slope failure probability and 
pile response. Ignoring the spatial variability of rock mass parameters will overestimate slope failure probability and the mean value 
of the maximum bending moment of anti-slide pile, and underestimate the mean value of displacement at pile head. The results can 
provide design guidance for slope reinforcement as well as layout optimization of anti-sliding piles. 
Keywords: reliability assessment of slopes; spatial variability; Hoek-Brown criterion; random finite difference method (RFDM); 
random response 
 

1  Introduction 

Geotechnical parameters have significant spatial 
variability due to differences in depositional conditions, 
loading history and other geological effects. And the 
geotechnical parameters at different spatial locations are 
somewhat correlated and not completely independent, 
which makes the slope stability research work more 
complicated[1–2]. However, the traditional deterministic 
analysis often evaluates the stability of slopes by the 
safety factor [3]. The uncertainty about the geotechnical 
parameters and the relative importance of the geotechnical 
parameters to the slope stability cannot be fully 
considered[4–7], which leads to the failure of some slopes 
even though the safety factor is high[8]. Therefore, in 
order to further understand the influence of spatial 
variability of geotechnical parameters on engineering 
reliability, random fields are often used to describe the 
naturally existing spatial variability of geotechnical 
bodies before performing slope reliability analysis. 
Probabilistic methods are often used as a means to 
effectively assess slope reliability when considering 
geotechnical uncertainties[9], among which Monte 
Carlo simulation methods are widely used[10]. There 
have been studies combining the random finite element 

method (RFEM)[11] and random finite difference method 
(RFDM)[12] with Monte Carlo simulation methods to 
study the influence of spatial variability of geotechnical 
bodies on slope reliability. 

In order to reduce the loss caused by slope instability, 
anti-slide piles are used in engineering to reinforce the 
slope. Anti-slide pile is a kind of lateral load-bearing 
pile, which can mobilize the strata far beyond the range 
of the pile to resist sliding together with it and reinforce 
the resistance of the strata under the action of landslide 
thrust. In recent years, some scholars have conducted 
in-depth studies on the impact of spatial variability on 
engineering stability and pile foundation response 
uncertainty. Huang et al.[13] proposed a method for 
evaluating the stability of anti-slide pile-reinforced 
slopes based on the reliability theory, which combines 
the strength reduction method with the response 
surface method to calculate the probability of slope 
failure. Teixeira et al.[14] analyzed the reliability of 
vertically loaded piles using the first-order reliability 
method and Monte Carlo simulation method, respectively. 
Chen et al.[15] discussed the influence of anti-slide pile 
position and pile length on the slope failure probability 
based on the limit equilibrium method when considering 
the spatial variability of soil, and analyzed the slope 
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failure mode. Gong et al.[16] proposed an optimized 
design framework, while considering the effects of 
geotechnical spatial variability, model uncertainty and 
structural parameter uncertainty on the design. Luo et 
al.[17] discussed the effect of vertical spatial variability 
of soil parameters on the design of individual energy 
piles for load carrying capacity limit states and normal 
use limit states based on the load transfer method and 
RFDM. It was found that neglecting the spatial variability 
of the soil will overestimate the failure probability of 
energy piles in both limit states. From the above analysis, 
it is clear that most of the research results on the 
influence of spatial variability of geotechnical bodies 
on engineering stability and pile foundations are based 
on the Mohr-Coulomb criterion for soil bodies. There 
is a lack of research on the reliability of rocky slopes 
and the random response of piles after anti-slide pile 
reinforcement. 

Since the Hoek-Brown criterion has the advantage 
of well reflecting the nonlinear damage characteristics 
and mechanisms of rock masses and conforms to the  
deformation and damage characteristics of jointed 
rock masses. In this paper, a study on the random field 
description parameters (coefficient of variation, correlation 
coefficient and scale of fluctuation) on the failure 
probability of rocky slopes before and after anti-slide 
pile reinforcement and the random response of anti- 
slide piles was carried out, based on Hoek-Brown 
criterion and RFDM. Uniaxial compressive strength  

ci  and material constant for the intact rock im  were 

considered as random field variables, and geological 
strength indicators were considered as random variables. 
This can provide a reference for the design of anti-  
slide piles. 

2  RFDM based on Hoek-Brown criterion 

2.1 Hoek-Brown criterion 
The Hoek-Brown criterion[18] has become one of the 

most widely used criteria in the field of rock strength 
prediction and stability analysis. One of its features is 
the realization of regularizing the rock stress components 
in a certain mathematical way and relating them to the 
material properties of the rock mass. Meanwhile, the 
generalized Hoek-Brown criterion can be expressed 
both in the form of principal stresses and in the form 
of positive and shear stresses on the damage surface[19], 
which can be used to predict the potential failure 
surface of the slope. The generalized Hoek-Brown 
criterion is expressed in the form  

3
1 3 ci b

ci

( )am s
  


                                          （1） 

where 1  is the maximum principal stress at the time 

of rock failure (pressure as positive); 3  is the 

minimum principal stress; ci is the uniaxial 

compressive strength of the intact rock; bm , s  and 

a  are constants that reflect the rock mass and rock 
type, which can be determined by the following 
equation  

b i

GSI 100
exp

28 14
m m

D

     
                   （2） 
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a

                
          （4） 

where D is the disturbance coefficient, whose value 
ranges from 0 to 1, which is related to the excavation 
method and the degree of disturbance of the rock mass; 
GSI is the geological strength index. The deformation 
modulus and Poisson's ratio of the rock mass can be 
obtained from the following equation[20]: 

((GSI 10)/40)ci
m 1 10

2 100

D
E

     
 

                           （5） 

i0.002GSI 0.003 0.457ν m                             （6） 

where mE is the deformation modulus (GPa) of the 

rock mass; and ν  is the Poisson's ratio. 
2.2 Random Field Theory 

Vanmarck[21] proposed random field theory to describe 
the spatial variability of geotechnical parameters. In 
random field theory, the mean value, coefficient of 
variation, correlation coefficient and scale of fluctuation 
of parameters are the key parameters describing the 
spatial autocorrelation of rock mass. In the process of 
generating random field generation of geotechnical 
material parameters, it is generally assumed that the 
parameters obey lognormal distribution. Because the 
lognormal distribution can effectively avoid generating 
negative parameter values. Numerous geological 
investigations and applications have demonstrated that 
the lognormal distribution can well describe the spatial 
variability of geotechnical material parameters[22–23]. If 
a parameter obeys a lognormal distribution, and the  
mean value ln  and variance 2

ln  are logarithm then 

the relationship between the logarithm of the parameter 
and the mean and variance of the parameter itself is 

2
ln

lnexp( )
2

                            （7） 

2 2 2
ln ln ln[exp( ) 1]exp(2 )                   （8） 

where   and  2  are the mean and variance of the 

parameter; ln   and 2
ln are the mean and variance of  

the logarithm of the parameter. In addition to the mean 
and variance in the distribution function, the autocorrela- 
tion function is used to describe the autocorrelation of 
a single parameter in space. For example, in a two- 
dimensional space, it is assumed that the autocorrelation 
function of the parameters is 

h v

22
( , ) exp yx

x y

  
 

  
    

  
               （9） 

where   is the autocorrelation coefficient between 

two points; x  and  y  are the horizontal and vertical 
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distances between meshes; h  and  v  are the 

horizontal and vertical scale of fluctuation. There are 
also many methods to generate random fields, such as 
local averaging method, K-L expansion method, and 
Cholesky decomposition method. Since the Cholesky 
decomposition method has the advantages of simple 
calculation and easy implementation of the program, 
this paper uses the Cholesky decomposition method to 
generate random fields: 

T L L C                               （10） 

1,2 1,2 1, 1,

2,1 2,1 2, 2,

,1 ,1 ,2 ,2
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   



C  

（11） 
where C is the correlation matrix, where n is the total 
number of meshes; L is the matrix obtained by 
Cholesky decomposition, and generates the correlation  
standard normal random field iG  under the given 

matrix conditions 

1
 1,2, ,

i

i
k

G i n


  ik kL Z                   （12） 

where kZ  are independent standard normal random 

variables. 
2.3 Failure probability calculation 

The strength reduction method has been widely 
used due to its practicality and reliability. The principle 
of this method is to change the value of the geotechnical 
strength parameters by varying the reduction coefficient 
until the slope becomes unstable. The strength reduction 
based on the Mohr-Coulomb criterion is shown as 
follows: 

t

tan
tan

F

                              （13） 

t

c
c

F
                                   （14） 

where   and  c  are the friction angle and cohesion 

before reduction; t  and  tc  are the friction angle  

and cohesion after reduction; and F  is the discount 
factor. With the continuous decrease of cohesive force 
and internal friction angle, the slope gradually is 
destabilized, and the calculation does not converge at 
the same time. However, the strength reduction method 
based on the Hoek-Brown criterion needs to be con- 
verted to the Mohr-Coulomb criterion first, and then 
the slope safety factor is determined by reducing the 
instantaneous friction angle and cohesion force[24]: 

c ctan c                              （15） 

where   and    are the shear stress and normal 
stress; c  and cc  are the instantaneous friction 

angle and cohesion, which can be calculated by the 
following equation: 

c

1
c 2 tan 90N   °                    （16） 

c

ucs
c

c
2

c
N


                              （17） 

where
c

N and ucs
c are the calculated intermediate 

quantities, which are deduced from the minimum 
principal stress 3  and other parameters: 

c

13
b b

ci

1 ( )aN am m s



                    （18） 

c

ucs 3
c 3 ci b

ci

(1 ) ( )aN m s
  


              （19） 

In this paper, Monte Carlo simulation method is 
used to evaluate the failure probability of engineering 
cases. It inputs a large number of random variables 

X  into the analysis model and then probability of 
occurrence of the event is analyzed after calculation.  
The failure probability fP  is defined as follows: 

MC

f
1MC

1
[FS ( ) 1]

N

i i
i

P I
N




  X                  （20） 

0,  if  FS 1 

1,  if  FS 1
i

i

I


  

≥
                        （21） 

where MCN  is the number of Monte Carlo simulations; 
FSi  is the safety factor calculated for the ith time; and 
I  is an indicative function. 

As shown in Eq. (20), the failure probability fP   
is related to the number of Monte Carlo simulations. 
Therefore, the convergence analysis is necessary to 
calculate the failure probability using Monte Carlo 
simulation method. As the number of Monte Carlo 
simulations increases, the failure probability will 
gradually converge to a constant value. When the 
coefficient of variation of the failure probability is less 
than a certain value, the failure probability at this time 
is the failure probability of the slope. In this paper, the  
coefficient of variation 

f
COVP  of the failure 

probability will be determined according to Eq. (22). It 
is judged that the calculation is converged when 

f
COVP  is less than 0.3[25]. In order to verify the  

reasonableness of the number of simulations further, 
the variation of the mean and standard deviation of the 
safety factor with the number of simulations will be 
analyzed. 

f f MC fCOV (1 ) / ( )P P N P                  （22） 

3  Numerical model and working conditions 

3.1 Model validation 
The example of homogeneous slope[26] is employed 

to verify the feasibility of the proposed method. The 
slope calculation model and mesh division are shown in 
Fig.1. The slope height is 10 m and the slope angle is 
45°. In order to meet the calculation accuracy 
requirements, the meshes are quadrilaterals and triangles 
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with a side length of 0.5 m[27]. The rock mass parameters 
are shown in Table 1, and the safety factor calculated[26] 
using the strength reduction method based on finite 
elements is 1.15. While the safety factor calculated in 
this paper based on the strength reduction method in 
FlAC3D for simulation analysis is 1.176. The safety 
factors calculated by both are close to each other, which 
indicates that the model calculation method is applicable. 
The slight difference between them may be due to the 
difference of model meshing and the different calculation 
methods of finite element method and finite difference 
method. 

 

 

Fig. 1  Analysis results of slope model and stability 

 
3.2 Introduction of working conditions 

Mayer et al.[28] statistically analyzed the geological 
strength index and uniaxial compressive strength of 
different rock masses in the region and found that the 
correlation length of spatial variation varied from tens 
to hundreds of meters. Öztürk et al.[29] used the ReV  
 

technique to study the spatial variation of uniaxial  
compressive strength ci , Rock Quality Designation 

(RQD), Schmidt hardness and static cutting rate of 
rock masses. Mao et al.[30] treated GSI , im , ci  and  

D  as random variables to study the ultimate bearing 
capacity of strip foundation. In order to examine the 
influence of spatial variability of rock strength para- 
meters on the probability of slope failure, simulation 
analysis conditions with different random field 
description parameters are set up on the basis of 
deterministic analysis. In this paper, the geological 
strength index ( GSI ) is considered as a random variable,  
while the uniaxial compressive strength ci  and the 

material constant for the intact rock im  are considered  

as random field variables. All three variables obey 
lognormal distribution[20, 31–32]. For GSI , Ching et 
al.[33] noted that this parameter was judged by 
engineering tests, which characterize the overall 
condition of the rock mass and do not represent the 
spatial variation of the precise physical parameters.  
For the correlation between ci  and im , the literature[34]  

states that the correlation coefficient varies from 
–0.242 38 (sandstone) to –0.79432(marble). According 
to the relevant literature, different working conditions 
are selected for simulation. The input parameters are 
shown in Table 2, where GSI  as a random variable. 
Its coefficient of variation is taken as the same value 
as the coefficient of variation of the random field.

Table 1  Properties of the rock slope 
Elastic modulus 

E 
/MPa 

Poisson's 
ratio  

Unit weight   
/(MN·m–3) 

Uniaxial 
compressive strength 

ci /MPa 

Geological strength 
Index GSI 

Material constant for 
the intact rock im

Perturbation 
factor D bm  s  a  

5 000 0.3 0.025 30 5 2 0 0.067 52.5 10 0.169

 
Table 2  Rock mass parameters of random field model 

Parameters Mean value Coefficient of variation Scale of fluctuation Correlation coefficient
Geological Strength Index GSI 5 0.1–0.5 － － 

Material constant for the intact rock im  2 0.1–0.5 h  2, 6, 10, 25, 50, 75, 100 m ,i cim   –0.7– –0.3
Uniaxial compressive strength ci 30 0.1–0.5 v  2, 6, 10, 25, 50, 75, 100 m ,i cim   –0.7– –0.3

 

4  RFDM-based slope failure probability 
calculation process 

In order to understand the calculation method of 
slope failure probability considering the spatial variability 
of rock strength parameters proposed in this paper, the 
failure probability calculation process is illustrated by 
Fig.2. The process is divided into six steps. 

Firstly, the geological and geometric parameters of 
the slope are determined, and then the uncertainties of 
the parameters are described by mean value, coefficient 
of variation and autocorrelation function. 

Generate NMC random samples by Latin hypercube 
sampling. 

Use the Fish language in FLAC3D to construct 
functions and to obtain the center coordinates of each 
mesh, and then generate the corresponding correlation 
matrix C  based on the autocorrelation function of 

Eq.(9) through the relationship between the coordinates 
of the meshes. 

The Cholesky decomposition of the correlation 
matrix C  yields the triangular matrix L , and obtain 
the lognormal random field. 

Calculate the safety factor of each slope and calculate 
the failure probability fP  by Monte Carlo simulation 
method according to Eqs. (20) and (21). 

Calculate the
f

COVP  for the slope failure probability 

fP . If the 
f

COVP  is less than 0.3, then fP  is the slope  

failure probability. Otherwise, it is necessary to increase 
the number of Monte Carlo simulations and repeat 
steps (2) to (5) until it is less than 0.3. 

5  Slope reliability analysis 

In this section, the effect of different random field 
description parameters (coefficient of variation COV, 
scale of fluctuation   and correlation coefficient  ) 

V=42.00 m3/m
FS=1.176

Slope horizontal strain increment

1.121 2×10–3 
1.100 0×10–4 
1.000 0×10–3 
9.000 0×10–4 
8.000 0×10–4 
7.000 0×10–4 
6.000 0×10–4 
5.000 0×10–4 
4.000 0×10–4 
3.000 0×10–4 
2.000 0×10–4 
1.000 0×10–4 
0.000 0×100 

–1.482 1×10–5 

Sliding surface location from 

4

Rock and Soil Mechanics, Vol. 42 [2021], Iss. 11, Art. 7

https://rocksoilmech.researchcommons.org/journal/vol42/iss11/7
DOI: 10.16285/j.rsm.2021.5464



                   ZHANG Wen-gang et al./ Rock and Soil Mechanics, 2021, 42(11): 31573168                  3161   

 

 

Fig. 2  Flow chart of calculation 

 
on the slope failure probability and slip volume is 
investigated for the slope without an anti-slide pile. In 
order to improve the computational efficiency and 
ensure the accuracy of the failure probability, different 
numbers of Monte Carlo simulations are analyzed. 
Figure 3(a) shows the gradual convergence of the 
mean and standard deviation of the slope safety factor 
with the number of simulations. It is calculated that  
when the number of simulations is 1,000 times, 

f
COVP   

0.3, which meets the calculation accuracy requirement. 
Therefore, the distribution of the slope factor of safety 
obtained from the random field model is fitted as 
shown in Fig.3(b) when the Monte Carlo simulation is 
performed 1000 times. 

Since the range of slope instability is closely related 
to the slip volume, this paper uses the slope slip volume 
to make a simple assessment of the range of slope 
instability. Firstly, the displacement field at the end of 
the calculation for each model of FLAC3D is exported. 
Since there is a difference between the displacement 
of the slope slip area and the stable area, the cluster 
analysis algorithm in Matlab can be used to automatically 
classify the slip area and the stable area according to 
the displacement size, and the coordinate points 
corresponding to the slip area are also distinguished. 
Then the coordinate points of the slip area are derived 
and the area of the slip area is calculated, which is the 
slip area of the two-dimensional slope instability. The 
predicted horizontal strain increment and slip area of 
the homogeneous slope are shown in Fig. 1, which are 
in agreement with the numerical simulation results. 
This shows that the method is reliable. 

 
 (a) Variation of mean and standard deviation with number  

of Monte Carlo simulations 
 

 

 (b) Distribution regularity 

Fig. 3  Convergence and distribution of safety of factor 
 
5.1 Effect of coefficient of variation 

Figure 4 shows the effect of the coefficient of 
variation on the probability of slope failure and slip 
volume. The correlation coefficient 

i ci,m    0.3, the 

horizontal scale of fluctuation h  10 m, and the 

vertical scale of fluctuation v  6 m. As can be seen  

from the figure, both the failure probability and the 
slip volume increase significantly with COV  increasing. 
The probability of failure is close to 0 when COV   
0.1, while the probability of failure is 37.03% at 
COV  0.5, which is a large difference between the 
two. This shows the great influence of the coefficient 
of variation of rock parameters on the reliability of 
slopes. Therefore, in practical engineering, the slope 
rock masses with large variability should be given 
sufficient attention. Figure 4(b) shows the probability 
density function curve after fitting the factor of safety 
obtained from the Monte Carlo simulation. The curve 
pattern progresses from tall and lean to short and fat 
with the increase of COV   and a gradual leftward shift 
of the mean value. This leads to an increase in the area 
of factor of safety less than 1 in the probability density 
curve and an increase in the probability of failure. 
5.2 Effect of correlation coefficient 

In order to explore the influence of the intercorrelation 
between uniaxial compressive strength ci  and material 

constant for the intact rock im  on slope reliability, 

the variation range of 
i ci,m   is taken from –0.7 to 

–0.3, the coefficient of variation is taken to be 0.3, 

h  10 m and v  6 m. Figure 5(a) gives the variation 

curves of slope failure probability over slip volume 
with 

i ci,m  . It is found that the slope failure probability 

and slip volume increase generally with increasing 
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i ci,m  . After fitting a lognormal distribution to the 

factor of safety, the slope failure probability increases 
from 10.8% to 15.5% when 

i ci,m   increases from  

–0.7 to –0.3, the mean value for the factor of safety 
decreases from 1.159 to 1.149 and the standard 
deviation increases from 0.13 to 0.16. This results in 
Fig. 5(b) where the probability density function curve 
becomes short and fat and the peak is left-skewed. It  

 

 

(a) Failure probability and slip volume 
 

 

     (b) Probability density curve 

Fig. 4  Influences of different COVs on failure probability  
of slope and volume of slip mass 

 

 

(a) Failure probability and slip volume 

 

 

    (b) Probability density curve 

Fig. 5  Influences of different m 
i ci, on failure probability  

of slope and volume of slip mass 

can be seen that the correlation coefficient has a large 
influence on the slope reliability, and the stability of 
the slope is favored when the rock parameters have a 
strong negative correlation. 
5.3 Effect of fluctuation scale 

In order to examine the effect of the scale of 
fluctuation on slope reliability, Figure 6 compares the 
effect of different horizontal scale of fluctuation h  

and vertical scale of fluctuation v  on slope failure 

probability and slip volume. It is assumed that COV  is 
0.3 and 

i ci,m   is –0.4. To analyze the effect of h , v  

is set to be 10 m and the variation range of h  is from 

2 to 100 m. Conversely, to study the effect of v , h  

is set as 10 m and the variation range of v  is from 2 to 

100 m. As shown in Fig. 6(a), the failure probability 
increases with h , and the trend of v  increases and 

then decreases, and the influence of h  on the slope 

failure probability is greater than the influence of v  

on the slope failure probability. The trend of failure 
probability and slip volume variation is obvious when 
the scale of fluctuation is within 2 to 10 m. However, as 
the scale of fluctuation increases the variability of 
failure probability decreases. The stronger the spatial 
correlation of rock parameters, the weaker the variability, 
and the smaller the fluctuation of damage probability 
and slip variation. It is worth noting that when v  75 

m, the probability of failure is reduced compared with 
that at v  50 m. At this time, the rock mass in the 

vertical direction is more homogeneous, which further 
slows down the slope instability. When h  25 m, the 

slip volume is still decreasing gradually. However, when 

v  exceeds 25 m, the slip volume increases slightly.  
 

 

    (a) Failure probability  
 

 

      (b) Slip volume 

Fig. 6  Influences of different  on failure probability  
of slope and volume of slip mass 
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This may be because when v  increases with h constant,  

the variability of rock parameters in the horizontal 
direction remains the same, while the vertical rock 
parameters tend to be more homogeneous. It can reduce 
the influence brought by the weak zone of rock mass, 
which is beneficial to slope stability. However, it makes 
the slip surface in slope change and the slip volume 
increase. 
5.4 Comparison of slip modes 

To further compare the differences in shape and 
location of the critical slip surfaces of the slopes 
obtained from different random field models, the 
typical critical slip surfaces of the slopes and their 
corresponding sample cloud atlas of rock strength 
parameters for the three random field models are 
selected in Fig. 7. Figure 7(a) shows the shallow slip 
mode located on the slope surface. Figure 7(c) shows 
the deep slip pattern located at the toe of the slope. 
And the landslide shear outlet in Fig. 7(b) is located at 
the toe of the slope. The shape of the slip surface is 
similar for these three modes, and all of them show a 
downward concave shape. Although the uniaxial 
compressive strength of the slope in Fig. 7(a) is 
smaller overall, its distribution is more uniform and 
the safety factor is closer to that of the homogeneous 
slope. However, although the local rock strength in the 
slope in Fig. 7(c) is larger, its slip surface still passes 
through the area with weaker rock parameters, 
resulting in a smaller factor of safety. The differences  

 

 

(a) Shallow slip pattern 
 

 

(b) Landslide shear outlet at the toe of the slope 
 

 

(c) Deep slip mode 

Fig. 7  Typical samples and analysis results  
of random fields 

in the factor of safety for the above three typical 
samples and their landslide locations and shapes 
indicate that the spatial variability of rock parameters 
significantly affects the slope factor of safety with 
respect to slip surface locations, shapes and slip 
volumes for the specified slopes, which are very 
different from the results of the deterministic analysis. 

6  Pile response and slope reliability 

It can be seen from the analysis in Chapter 5 that 
the spatial variability of rock mass will affect the 
reliability of slope. In order to reduce the loss caused 
by slope instability, anti-slide piles are commonly used 
to support the slope. In this chapter, the same 
simulation scheme as in Chapter 5 will be used to 
study the slope supported by anti-slide piles. Firstly, 
deterministic analysis was performed with different 
pile lengths and pile positions for five points as shown 
in Fig. 8(a). The anti-slide pile treatment method was 
referred to the literature[35], and structural unit piles 
with a modulus of elasticity of 34GPa and Poisson's 
ratio of 0.15 were used. The results shown in Fig. 8(b) 
indicate that the slope factor of safety is the highest 
when the anti-slide pile is located at point C and the 
pile length is 19 m. The horizontal strain cloud atlas of 
the slope is shown in Fig. 8(a), and the following 
studies are carried out based on this condition. 

 

 

(a) Distribution of piles 
 

 
    (b) Change in factor of safety 

Fig. 8  Influence of different pile locations and pile lengths 
on slope stability 

 
The maximum displacement and maximum bending 

moment at the top of the pile for the laterally loaded 
piles are important parameters for designing piles[36]. 
As a kind of laterally loaded pile, the anti-slide pile is 
difficult to express explicit expressions due to its 
maximum bending moment and displacement solution. 

0 5 10 15 20
1.00

1.25

1.50

1.75

2.00

Fa
ct

or
 o

f 
sa

fe
ty

 

Pile length /m 

A
B
C
D
E

Uniaxial compressive strength /Pa 

FS=1.004

1.251 3×108 
1.200 0×108 
1.100 0×108 
1.000 0×108 
9.000 0×107 
8.000 0×107 
7.000 0×107 
6.000 0×107 
5.000 0×107 
4.000 0×107 
3.000 0×107 
2.000 0×107 
1.000 0×107 

6.276 2×106 

Uniaxial compressive strength /Pa 

FS=1.043 

1.302 5×108 
1.300 0×108 
1.200 0×108 
1.100 0×108 
1.000 0×108 
9.000 0×107 
8.000 0×107 
7.000 0×107 
6.000 0×107 
5.000 0×107 
4.000 0×107 
3.000 0×107 
2.000 0×107 

1.000 0×107 

6.687 9×106 

Uniaxial compressive strength /Pa 

 

FS=1.145 

2.000 0×108 
1.950 0×108 
1.800 0×108 
1.650 0×108 
1.500 0×108 
1.350 0×108 
1.200 0×108 
1.050 0×108 
9.000 0×107 
7.500 0×107 
6.000 0×107 
4.500 0×107 
3.000 0×107 

1.500 0×107 

6.000 0×106 

Incremental horizontal strain on the slope 
A 

B 
C 

D 
E 

6.345 2×10–2

6.100 0×10–2

5.500 0×10–2

5.000 0×10–2

4.500 0×10–2

4.000 0×10–2

3.500 0×10–2

3.000 0×10–2

2.500 0×10–2

2.000 0×10–2

1.500 0×10–2

1.000 0×10–2

5.000 0×10–3

0.000 0×100

–5.000 0×10–3

–1.000 0×10–2

–1.164 3×10–2

7

ZHANG et al.: Reliability analysis of slope and random response of anti-sliding

Published by Rock and Soil Mechanics, 2021



3164               ZHANG Wen-gang et al./ Rock and Soil Mechanics, 2021, 42(11): 31573168                       

 

Therefore, its statistical properties such as mean and 
standard deviation are difficult to obtain. A large 
number of calculations are needed to determine the 
statistical properties. In this section, we will study the 
response of anti-slide piles considering the spatial 
variability of rock mass and the estimation of slope 
failure probability. In order to improve the computational 
efficiency and meet the accuracy requirements, it can 
be found from Fig.9 that the mean and standard 
deviation of the pile top displacement and maximum 
bending moment converge when the number of 
simulations is 500, and the scale of fluctuation is less 
than 5%[36]. 

 

 
(a) Pile top displacement 

 

 
 (b) Maximum bending moment 

Fig. 9  Variations of mean and standard deviation of 
monitoring parameters with the number of simulations 

 
6.1 Effect of coefficient of variation 

The effect of spatial variability on the horizontal 
bearing capacity and maximum bending moment of 
laterally loaded piles was studied[36]. It is found that 
the horizontal load and pile top displacement show a 
positive correlation, and the law of variation of the 
mean value of maximum bending moment is similar to 
that of the mean value of bearing capacity. These 
regulations provide a reference for the research in this 
section. Fig.10 depicts the variation of mean value and 
coefficient of variation of displacement of anti-slide 
pile and maximum bending moment of anti-slide pile 
top under different coefficients of variation. 

From section 5.1, it can be seen that as the 
coefficient of variation of rock mass increases, the 
slope failure probability and slip volume increase, the 
slip force increases and the instability is enhanced. 
This may make the bearing capacity of the anti-slide 
pile decrease, which leads to an increase in the mean 

value of pile top displacement and a decrease in the 
mean value of maximum bending moment. While the 
coefficient of variation of the maximum bending 
moment has the opposite trend, which is unfavorable 
for the design and construction of pile foundation. 
Therefore, sufficient attention should be paid to the 
rock variability in practical engineering. 

 

 

(a) Pile top displacement 
 

 
  (b) Maximum bending moment 

Fig. 10  Influence of different COV on monitoring 
parameters of anti-sliding pile 

 
6.2 Effect of correlation coefficient 

The effect of correlation coefficient 
i ci,m   change  

on the pile random response is given in Fig. 11. From 
the analysis in section 5.2, it can be seen that as the 
correlation coefficient increases, the negative correlation 
between the rock parameters decreases and the slope 
failure probability and slip volume increase. This may 
lead to an increase in the sliding force of the slope, an 
increase in the mean value of the pile top displacement 
and a decrease in the mean value of the maximum 
bending moment. However, it can be observed from 
Fig. 11 that the correlation coefficient of rock has a 
significant effect on the coefficient of variation of pile 
top displacement than on the coefficient of variation of 
maximum bending moment. This indicates a high 
degree of dispersion of pile top displacement. In order 
to avoid losses, the variability of the rock mass needs 
to be fully considered in the design to reduce the 
variability of the pile top displacement caused by the 
rock mass variability. The mean value and standard 
deviation of maximum bending moment have the 
same trend as in section 5.1. The mean value decreases 
while the coefficient of variation is increasing, but the 
range of variation is small. 
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(a) Pile top displacement 

 

 

 (b) Maximum bending moment 

Fig. 11  Influence of different 
i im 

c, on monitoring 
parameters of anti-sliding pile 

 

6.3 Effect of fluctuation scale 

Figures 12 and 13 compare the effects of different 
fluctuation ranges on the displacement and maximum 
bending moment at the top of the anti-slide pile. From 
the figures, it can be observed that with the increase of 
fluctuation range, the mean value of pile top displace- 
ment has a trend of increasing and then decreasing. 
While the mean value of maximum bending moment 
is continuously decreasing, its coefficient of variation 
changes in the opposite direction. This phenomenon is 
not conducive to the stability of the pile. When the 
fluctuation range is less than 25 m, the mean values of 
pile top displacement and maximum bending moment 
change significantly. The mean value of pile top 
displacement reaches the maximum v  at 25 m. This 
may be due to the fact that 25m is close to the fluctuation 
range of the "worst case" of the slope[36]. From the 
analysis in section 5.3, it can be seen that when the 
fluctuation range is larger, the overall probability of 
failure is also increasing. However, the slip volume 
has a tendency to decrease. It can be found that the 
increase of scale of fluctuation of rock parameters may 
reduce the influence range of slope instability, and thus 
the mean value of pile top displacement decreases. 
The degree to which the pile random response is 
affected by the scale of fluctuation is also decreasing. 
The analysis shows that the effect of v  on pile 
response is less than the effect of h , because the 
increase of v  makes the rock mass in the vertical 
direction of the slope tend to be homogeneous and can 
resist the slip together with the anti-slide pile. 

 

(a) Pile top displacement 
 

 

(b) Maximum bending moment 

Fig. 12  Influences of different h on monitoring 
parameters of anti-sliding pile 

 

 

(a) Pile top displacement 
 

 

 (b) Maximum bending moment 
Fig. 13  Influences of different  v on monitoring 

parameters of anti-sliding pile 

 
6.4 Estimation of slope failure probability 

Since the failure probability of the reinforced slope is 
very small, tens of thousands of calculations are required 
to obtain a more accurate slope failure probability using 
Monte Carlo simulations[15]. Therefore, in order to 
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obtain more accurate slope failure probabilities while 
improving the computational efficiency, the safety factor 
obtained from Monte Carlo simulations can be fitted to 
the distribution to estimate the failure probability of the 
anti-slide pile reinforced slope[37]. Firstly, the failure 
probability obtained from the Monte Carlo simulation of 
the unreinforced slope was compared with the failure 
probability obtained after fitting the safety factor with 
lognormal distribution, as shown in Fig.14. It is found 
that there is an error between the two, but it is within 
20% and the coefficient of determination 2R  0.987. It 
shows that the fitting result meets the requirement of 
calculation accuracy. Therefore, the failure probability 
can be estimated by the lognormal method.  After 500 
Monte Carlo simulations, the factor of safety of the anti- 
slide pile reinforced slope considering the spatial 
variability of the rock mass also approximately obeys 
the lognormal distribution, and its mean and standard 
deviation have stabilized. Therefore, the probability of 
failure is estimated after fitting the lognormal distribu- 
tion to the factor of safety, as shown in Fig. 15. 

 

 

Fig. 14  Comparison of failure probability  
of unreinforced slopes 

 

 

Fig. 15  Fitting of safety of factor 

 
Figure 16 shows the effect of different random 

field description parameters on the failure probability 
of the anti-slide pile reinforced slope. It can be seen 
from the figure that the failure probability increases 
with the increase of COV ,

i ci,m   and  , where COV  

has the greatest impact on the failure probability, and 
the effect of v  on the slope failure probability is 

smaller than the effect of h  on the failure probability. 

 

     (a) Coefficient of variation 
 

 

     (b) Correlation coefficient 
 

 

      (c) Scale of fluctuation  

Fig. 16  Influences of different random field description 
parameters on failure probability of slope reinforced  

by anti-slide piles 

7  Conclusions 

(1) The coefficient of variation, correlation coef- 
ficient and scale of fluctuation of rock strength 
parameters have obvious influence on the reliability of 
the slope system. When the variability of rock parameters 
or the negative correlation between rock parameters is 
large, ignoring the spatial variability of parameters 
will obviously overestimate the failure probability of 
unreinforced slopes. The failure probability increases 
with h  increase, and tends to increase and then 
decrease with v  increase. 

(2) Through Monte Carlo simulation of the 
anti-slide pile reinforced slope and statistical analysis 
of the pile top displacement and maximum bending 
moment, it was found that the spatial variability of the 
rock mass had a significant effect on the random 
response of the pile. The mean value and coefficient of 
variation of pile top displacement showed the same 
trend with different random field description parameters. 
The mean value of maximum bending moment decreased  
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with the increase of COV, 
i ci,m   and  , but its  

coefficient of variation increased. The pile top 
displacement in the deterministic analysis is 0.010 5 m, 
which is higher than this value for all the working 
conditions in the random field analysis. The maximum 
bending moment is 1.8 MN·m, while it is lower than 
this value for all conditions in the random airport 
analysis. This indicates that neglecting the spatial 
variability of the rock mass will have a negative 
impact on the optimal design of the anti-slide pile 
compared with the deterministic analysis. 

(3) Monte Carlo simulations were performed on 
the slopes strengthened by anti-slide piles, and the 
factor of safety obtained from the simulations was 
fitted to the lognormal distribution to estimate the 
failure probability of the slopes reinforced by anti- 
slide piles. It is found that the failure probability 
increases with the increase of COV and   for the 
slopes reinforced by anti-slide piles. The effect of 
COV on the failure probability is the largest, and the 
effect of v  on the slope failure probability is smaller 
than the effect of h  on the failure probability. 

In this paper, slope reliability analysis and pile 
random response considering the spatial variability of 
rock parameters are studied, and the geological 
strength index GSI is considered as an index to 
evaluate the quality of rock masses. However, for the 
rock mass whose damage is mainly controlled by the 
structural surface, the application of random field 
needs further study. 
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