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System failure probability analysis of cohesive slope considering the spatial 
variability of undrained shear strength 
 
LIU Hui,  ZHENG Jun-jie,  ZHANG Rong-jun 
Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China 

 
Abstract: A system failure probability analysis method of cohesive slope considering the spatial variability of undrained shear strength 
is proposed. In this method, the local averaging parameter of the random field of undrained shear strength on slip surface is introduced 
as an equivalent parameter. The statistical characters of the equivalent parameter and the correlation coefficient between different equivalent 
parameters are formulated. Then, the reliability index of a single failure mode and the correlation coefficient between different failure 
modes are calculated based on the equivalent parameters. By considering both the reliability index and correlation coefficient between 
different failure modes, the representative slip surfaces are searched step by step, and the system failure probability is assessed using 
those representative slip surfaces. Finally, to verify this method, three slopes are analyzed as examples. The results show that the equivalent 
parameter obtained by local averaging along the circular slip surface is feasible to describe the spatial variability of the undrained shear 
strength, and the proposed method can assess the system failure probability of cohesive slope with small error. Meanwhile, the correlation 
coefficient between failure modes increases with the spatial correlation of the random field, thus the number of representative slip surfaces 
required to achieve convergence will reduce. 
Keywords: slope stability; system failure probability; spatial variability; correlative failure mode; equivalent parameter 
 

1  Introduction 

The reliability analysis of slope system considering 
the spatial variability of soil parameters has been attracting 
lots of researchers in slope engineering in recent years. 
The spatial variability of soil parameters brings certain 
uncertainty to the failure mode and stability factor of the 
slope. A single failure mode and deterministic safety factor 
cannot describe this uncertainty. It is necessary to use the 
reliability method to calculate the probability of failure 
of slopes. In the slope reliability analysis, there are countless 
potential sliding surfaces, and the failure of any one of 
the potential sliding surfaces can lead to failure of the 
slope system. In other words, the slope system can be 
regarded as a series system composed of countless potential 
sliding surfaces (i.e. failure modes)[1−2]. 

In the reliability analysis of slope system, the deter- 
mination of the critical failure slip surface is a difficult 
problem, especially when the spatial variability of soil 
parameters is considered. At present, there are mainly two 
categories of methods to address the critical failure sliding 
surface. The first category searches for the most dangerous 
sliding surface every time to ensure that the slope always 
slides along the sliding surface corresponding to the mini- 
mum safety factor, including stochastic finite element 
method[3−4], stochastic limit equilibrium method[5], and 
limit analysis method[6−7]. When considering the spatial 

variability of soil parameters, those methods require a 
discretization of random field for each simulation. To obtain 
the failure probability, thousands of Monte Carlo simu- 
lations are carried out, and a deterministic analysis is 
performed to calculate the minimum safety factor of the 
slope in each simulation. This process commonly requires 
enormous computing resources. The second category of 
method selects several representative sliding surfaces 
as the research object and approximates the slope system 
into a surrogate system composed of these representative 
sliding surfaces. In this way, the reliability of the slope 
system can be estimated by calculating the reliability of 
the surrogate system[1, 8−9]. This method recognizes that 
although different sliding surfaces have different positions, 
they have common (or related) soil parameters, and their 
safety factors are also related. Zhang et al.[1] showed that 
if the safety factors of a group of sliding surfaces were 
highly correlated, their limit state equations were app- 
roximately parallel in the standard normal space. According 
to the geometric meaning of the reliability index, the reli- 
ability of the series system composed of this group of 
sliding surfaces is approximately equal to the minimum 
reliability of this group of sliding surfaces. On this con- 
dition, the sliding surface corresponding to the minimum 
reliability is a representative sliding surface. The repr- 
esentative sliding surface method improves the efficiency 
of reliability analysis of slope system, and it has been 
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widely used[10−12]. 
When considering the spatial variability, it is necessary 

to discretize the random field of soil parameters into many 
random variables, which leads to a large number of input 
parameters of the slope system, and it is relatively difficult 
to calculate the correlation coefficient between failure 
modes. Currently, the usual approach is to select only the 
minimum reliability sliding surface to approximate the 
slope system[13−14]. This method tends to overestimate the 
reliability of the slope. Another approach is to ignore the 
spatial variability of the soil in the horizontal direction 
and only consider its vertical spatial variability. On this 
condition, the input parameters of the slope system are 
controllable, and the correlation coefficient between failure 
modes can also be obtained. Based on this assumption, 
Zheng et al.[8] used the approximate correlation coef- 
ficients and Pearson correlation coefficients to calculate 
the system reliability of slopes under related failure modes 
by a discretization of one-dimensional random field. Li 
et al.[9] considered the vertical spatial variability of soil 
parameters and discretized the one-dimensional random 
field to obtain the reliability of the slope by using risk 
clustering method to identify representative sliding sur- 
faces. However, when the spatial variability of soil para- 
meters in the horizontal direction cannot be ignored, 
there are many parameters involved in identifying rep- 
resentative sliding surfaces. In this context, it may be very 
difficult to calculate the correlation coefficients between 
various failure modes using the above methods.  

In this paper, the saturated clay slopes are discussed. 
The undrained shear strength Su is locally averaged on 
the circular sliding surface, the equivalent parameters and 
their statistical characteristics after the local average are 
obtained, and the correlation coefficient between the equi- 
valent parameters of different sliding surfaces is derived, 
thus the correlation coefficient between different failure 
modes is obtained. By comprehensively considering the 
correlation coefficient between the reliability index of 
the potential sliding surface and the failure mode, a method 
for searching the representative sliding surface step-by-step 
is developed, and the system failure probability of the 
slope is calculated. Finally, the method proposed in this 
paper is used to analyze three slope examples and the 
results are compared with the previous studies. The results 
verify the reliability of the proposed method in this paper. 

2  Equivalent parameters considering the local 
average effect 

2.1 Variance reduction coefficient of equivalent 
parameters 

For a saturated clay slope shown in Fig.1, the safety 

factor is 

u
S =

sin
i i

i i

S l
F

W α
Δ

Δ



                         （1） 

where Sui is the undrained shear strength at the bottom 
of the soil slice; Δli is the length at the bottom side of 
the soil slice; ΔWi is the weight of the soil slice; and αi 
is the inclination angle of the soil slice. 

When considering the spatial variability, a discreti- 
zation of random field is often needed to obtain the soil 
parameters at the bottom of the soil slice[14]. This process 
requires a lot of computing resources. Suchomel et al.[15] 
and Hu et al.[16] believed that the random field parameters 
can be locally averaged on the sliding surface, and the 
equivalent parameters after the local average can be used 
to transform the spatially variable soil into an equivalent 
homogeneous soil. This research will continue adopting 
this idea and introduce this equivalent parameter into the 
circular sliding surface. 

 

Fig. 1  Bishop method for cohesive slope 
 

In the slope profile shown in Fig.2, P(x, y) is a random 
field of soil parameters, and its mean and variance are 
μ and σ 2. The radius of the arc sliding surface L is R, 
the center coordinates are (X, Y). The polar coordinate 
system is established with the center of the circle, and 
the polar angles corresponding to the two ends of the 
arc are θ1 and θ2. The equivalent parameter PL after the 
random field is locally averaged on the sliding surface 
is defined as a curve integral: 

( , )d /L
L

P P x y s L=                          （2） 

where L is the length of the arc curve. According to this 
definition, combined with Eq.(1), it can be found that 
the factor of safety for saturated cohesive soil slopes has 
a linear relationship with the equivalent parameters of 
undrained shear strength. Calculating the mean and vari- 
ance of the equivalent parameter PL, we can get 

2
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where γ is the variance reduction coefficient of the equi- 
valent parameter; ρ is the correlation function of the random 
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Δli 

ΔWi 

A

B 

Sui 

2

Rock and Soil Mechanics, Vol. 42 [2021], Iss. 6, Art. 2

https://rocksoilmech.researchcommons.org/journal/vol42/iss6/2
DOI: 10.16285/j.rsm.2020.6476



LIU Hui et al./ Rock and Soil Mechanics, 2021, 42(6): 1529−1539                      1531 

 

field. Two commonly used correlation functions are exp- 
onential correlation function and Gaussian correlation 
function. For the exponential correlation function, we have 

1 2
1 2

1 2

| | | |( , ) exp 2 τ τρ τ τ
δ δ

  
= − +  

   
              （4） 

For the Gaussian correlation function, we have 
2 2

1 2
1 2

1 2
( , ) exp

τ τ
ρ τ τ

δ δ

       = −π +          
          （5） 

After derivation (see appendix for details), the variance 
reduction coefficient γ is calculated as 

2 2
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It can be seen that the local average effect of the random 
field does not affect the mean value of the equivalent par- 
ameters, but its variance should be reduced on the basis 
of the "point" variance of the random field. The degree 
of reduction depends on the correlation function of the 
random field, the position and the length of the sliding 
surface. It is worth noting that when an exponential cor- 
relation is taken to characterize the random field, the 
calculation formula of the variance reduction coefficient 
obtained here is equivalent to that in the literature [16]. 

 

Fig. 2  The equivalent parameter of circular slip surface 
 

2.2 Correlation coefficients between equivalent 
parameters 

Assuming two sliding surfaces L1 and L2 in Fig.3, the 
center coordinates of the sliding surface L1 are (X1, Y1), 
the radius is R1, the polar angles of the two arc end points 
in polar coordinates are θ11 and θ12, respectively. The same 
applies to the sliding surface L2. The equivalent parameters 
of the random field P(x, y) after being locally averaged 
on two arcs are PL1 and PL2, respectively, and the cor- 
relation coefficient between the two equivalent parameters 
is 
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                                        （7） 
where γ1 and γ2 are the variance reduction coefficients 
of the equivalent parameters of the sliding surface res- 
pectively, and the derivation process is elaborated in the 
appendix. 

 

Fig. 3  Correlation coefficient between two equivalent 
parameters 

3  Reliability of undrained slope system 

3.1 Response surface method based on equivalent 
parameters 

As mentioned above, by introducing the equivalent 
parameters of undrained shear strength, the safety factor 
of saturated clay slope for a given sliding surface is a linear 
function of the equivalent parameters. A linear function 
can therefore be used as the performance function of 
the sliding surface, namely 

S
1

( ) 1 1
n

i i
i

g F a x
=

= − = −X                    （8） 

where g is the response surface function; X = [x1, x2, ···, 
xn]T is a vector including the basic variables of the res- 
ponse surface equation; n is the number of variables, 
which generally equals to the number of soil layers where 
the sliding surfaces passing through; ai is parameters to 
be determined. There are a total of n undetermined para- 
meters in Eq.(8). In order to determine these n unde- 
termined parameters, nth sampling calculations are required, 
and the points sampled at the mean values of the equ- 
ivalent parameters are sufficient to meet the requirements. 

We take a two-layered slope as shown in Fig.4 as 
an example to briefly explain the application of equivalent 
parameters in the response surface equation. In the figure, 
the sliding surfaces Si and Sj pass through two layers of 
soil, and their corresponding equivalent parameters in the 
two layers of soil are ci

(1), ci
(2)and cj

(1), cj
(2), respectively. 
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The superscripts represent the soil layer, and the subscripts 
represent the sliding surface. Therefore, the response surface 
functions of the sliding surface are 

(1) (2)

(1) (2)

( , )
( , )

i i i i

j j j j

g g c c

g g c c

= 


= 
                         （9） 

When the parameters of different soil layers are inde- 
pendent of each other, their corresponding equivalent 
parameters, such as ci

(1) and ci
(2), are also independent 

of each other. However, the equivalent parameters in the 
same soil layer, such as ci

(1) and cj
(1), are related, and the 

correlation coefficient can be calculated by Eq.(7). 

 
Fig. 4  Two illustrative slip surfaces and its equivalent 

parameters of a two-layered soil slope 
 

The first-order reliability method (FORM) is used to 
calculate the reliability index of the slope in single failure 
mode. According to the classic FORM theory, the reliability 
index β is the shortest distance from the origin to the limit 
state surface in the standard normalized space[17], namely 

T

0
min
g

β
=

= α α                            （10） 

where g = 0 is the limit state equation; α is the indepe- 
ndent standard normalized variables in the limit state 
equation. When the minimum value is obtained on the 
right side of the equation, the minimum point (denoted 
as α*) is the design point. In this study, all variables are 
lognormal distributions, which can be converted to normal 
distributions ln(X) by taking the natural logarithm, and 
then ln(X) is converted to standard normal distribution 
space by taking (ln(Xi)−μi)/σi. Since the transformation 
from lognormal distribution to normal distribution is non- 
linear, the correlation coefficient between random variables 
has changed, but the difference is small, and the influence 
on the calculation result is negligible[18]. As a result, the 
influence is not taken into account in this research. At 
the same time, the optimization problem described by 
Eq.(10) can be solved by the built-in function ‘fmincon’ 
in MATLAB. 
3.2 Correlation coefficients between different failure 
modes 

Suppose the design points of two failure modes gi≤0 
and gj≤0 (denoted by Fi and Fj, similarly hereinafter) 
are i

∗α and j
∗α , respectively. When the spatial variability 

of soil parameters is not considered, the corresponding 

parameters in i
∗α and j

∗α  are completely related, which 
is the situation in the literatures[1, 19]. At this moment, 
the correlation coefficient between the two failure modes 
can be calculated using the following formula[19]: 

T

= i j
ij

i j

λ
β β

∗ ∗α α
                             （11） 

However, when considering the spatial variability, 
the parameters corresponding to the design points i

∗α  
and j

∗α  are not completely correlated. For example, for 
(1)
ic and 

(1)
jc in Eq.(9), their correlation coefficient is des- 

cribed by Eq.(7). Because of this correlation, the correlation 
coefficient between the two failure modes should be smaller 
than when spatial variability is not considered. The cor- 
relation coefficient between the two failure modes after 
introducing equivalent parameters is deduced as follows: 

T ( )

=
kk

i ij j
ij

i j

r
λ

β β

∗ ∗  α α
                        （12） 

where [ ( )kk
ijr ] is a diagonal matrix, and the elements on 

the diagonal 
( )kk

ijr represent the correlation coefficient 
between the equivalent parameters 

( )k
ix  and 

( )k
jx  after 

the local average of the random field under the failure 
modes Fi and Fj. The superscript k represents the serial 
number of soil layer, and the subscripts i and j represent 
the serial number of sliding surface. Similarly, when the 
parameters of different soil layers are independent of each 
other, their corresponding equivalent parameters are also 
related and independent, whereas the equivalent parameters 
in the same soil layer are interrelated, so [ ( )kk

ijr ] is a diagonal 
matrix. 

(11)
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             （13） 

3.3 Calculation of system failure probability 
As mentioned above, the slope system is a series system 

composed of countless potential sliding surfaces, and the 
system failure probability can be approximated by several 
(set to N) related representative failure modes. Suppose 
the reliability index of these N representative failure modes 
Fk (k = 1, 2, …, N) is β = [β1, β2, …, βN], the correlation 
coefficient matrix between the failure modes is Λ, then 
the failure probability calculation of the surrogate system 
is actually to find the value of the cumulative probability 
function of the multivariate normal distribution, namely 

=1 =1 =1
( ) = 1 ( ) = 1 ( ) =

N N N

f k f k f kk k k
F P F P F∪ − ∪ − ∩  

1 ( , )Φ− β Λ                              （14） 
where ∪ represents the union of events; ∩ represents 

(1)
jc

(1)
ic

Si 
Sj 

(2)
ic  (2)

jc
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the intersection of events; kF represents the complement 
set of event Fk; and Φ is the cumulative probability function 
of the multivariate normal distribution, its mean value 
is 0, and the covariance matrix is Λ. 

The key issue is how to select representative sliding 
surfaces from a large number of potential sliding surfaces. 
Zhang et al.[1] took the minimum reliability sliding surface 
as the first representative sliding surface, then pre-selected 
the correlation coefficient threshold between failure modes 
λ0, and searched for the representative sliding surface 
by gradually eliminating the sliding surfaces which were 
highly correlated with the current representative sliding 
surface (λ > λ0). When the spatial variability is not con- 
sidered, soil parameters are completely correlated in the 
same soil layer, thus the values of the correlation coeffi- 
cients between failure modes are commonly large. Acc- 
ording to the analysis of Zhang et al.[1], for a simple homo- 
geneous slope, the convergence results can be obtained 
when the correlation coefficient threshold λ0 is set to 0.6. 
However, when considering the spatial variability, the 
correlation coefficient between different failure modes 
is smaller since the correlation coefficient of equivalent 
parameters between different sliding surfaces is less than 
1 (Eq.(12)). Consequently, in order to make the calculated 
system failure probability converge, the correlation coe- 
fficient threshold λ0  should take a relatively large value, 
so the number of representative sliding surfaces is bound 
to increase dramatically. On the other hand, as shown 
in Eq.(14), the failure probability of the surrogate system 
composed of representative sliding surfaces is related to 
the reliability index and the correlation coefficient matrix. 
Hence, it is a more reasonable method to comprehensively 
consider the reliability indexes of potential failure modes 
and their correlation coefficients to search for represen- 
tative sliding surfaces. 

Based on the above considerations, this paper proposes 
a representative sliding surface searching method based 
on optimization analysis. This method first takes the sliding 
surface with the minimum reliability as the first rep- 
resentative sliding surface, and the next representative 
sliding surface should maximize the system failure pro- 
bability of the new surrogate model, namely 

1
1

0 1max = 1 ( )fS
P Φ β−                        （15） 

[ ] 1 1
1 T

1

max 1 , ,
1k

k

k k
f k kS

k

P Φ β − −
−

−

   = −   
   

λ
λ
Λ

β      （16） 

where S1 is the first representative sliding surface; β1 is 
the reliability index of the first representative sliding surface; 
Φ0 is the cumulative distribution function of the standard 
normal distribution; k = 2, 3, 4, …, which means the 
number of representative sliding surfaces; Sk represents 

the k-th representative sliding surface; βk−1 and Λk−1 are 
the reliability index vector and correlation coefficient 
matrix of the first k−1 representative sliding surfaces; βk 
is the reliability index of the k-th representative sliding 
surface; and λk−1 is the correlation coefficient vector des- 
cribing the correlations between the k-th representative 
sliding surface and the first k−1 representative sliding 
surface. 

In the process of searching for representative sliding 
surfaces, the failure probability of the surrogate system 
gradually converges as the number of representative sliding 
surfaces increases. If the difference between the previous 
failure probability and the next failure probability is less 
than a given allowable error ε, the entire searching process 
can be ended. The calculation process of searching the 
representative sliding surface step by step is as follows: 

(1) Search for the sliding surface of the minimum 
reliability according to Eq.(15) and take it as the first 
representative sliding surface to calculate the failure pro- 
bability of the current surrogate system. 

(2) Search for the next representative sliding surface 
according to Eq.(16) to obtain the failure probability of 
the new surrogate system, and compare it with the failure 
probability of the previous one to calculate the relative 
error. 

(3) If the relative error is greater than the given allow- 
able error, repeat step (2), otherwise the calculation 
ends. 

According to the description of Eqs. (15) and (16), 
the searching problem of representative sliding surfaces 
is actually an optimization problem, that is, to determine 
a sliding surface so that Eq.(15) (or Eq.(16)) reaches 
the maximum value. Under the assumption of circular 
sliding surface, the sliding surface is completely chara- 
cterized by its center coordinates X, Y and radius R. At 
this time, the search for representative sliding surfaces 
is to determine three variables (X, Y, R), which lead to 
that the objective function described in Eqs. (15) and (16) 
takes the maximum value. This research uses genetic 
algorithm to solve this problem. The following takes the 
minimum reliability sliding surface searching problem 
as an example to briefly describe the calculation process 
of the genetic algorithm: 

(1) Randomly generate several potential sliding sur- 
faces (that is, several sets of control variables X, Y, R), 
calculate the equivalent parameters of the corresponding 
sliding surfaces, establish the response surface equation, 
and use Eqs. (11) and (15) to calculate its reliability index 
and value of the objective function. 

(2) Select a certain proportion of sliding surfaces with 
high adaptability (large objective function value) from the 
parent sliding surfaces, and perform crossover, mutation 
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and recombination operations on its control parameters 
(X, Y, R) to obtain a new set of sliding surfaces and cal- 
culate its objective function value. 

(3) Repeat step (2) until the number of iterations reaches 
the predetermined maximum number of generations. 

In the iterative process, due to the operations such as 
crossover, mutation, and recombination, the excellent 
genes of the previous generation have a greater probability 
of being passed on to the next generation, so that the 
optimal individual in the next generation gradually app- 
roaches the optimal solution of the objective function, 
that is, the search gives the sliding surface with the smallest 
reliability. In the same way, when searching the following 
representative sliding surfaces, the same procedure is per- 
formed, while the only difference is that the objective 
function is replaced by Eq.(16). More information on 
genetic algorithms can be found in literature [20]. 

4  Example analysis 

4.1 Case 1 
Consider a single-layered slope as shown in Fig.5. 

The calculation model and parameters are selected from 
literature [5]. The slope height is 5 m, the slope is 1:2, 
and the soil unit weight is 20 kN /m3. The undrained shear 
strength of soil Su is a lognormal distribution, and its mean 
value and coefficient of variation are 23 kPa and 0.3. The 
exponential correlation function is used to describe the 
spatial correlation of Su, and the horizontal and vertical 
correlation lengths are δ1 = 40 m and δ2 = 4 m. The Bishop 
method is used to calculate the safety factor of the sliding 
surface of the slope. The deterministic analysis result 
shows that the safety factor of the slope is 1.357, which 
is consistent with the result (1.356) from the literature [5]. 
Since Su is lognormally distributed, its equivalent para- 
meter is the sum of countless lognormal distributions. 
Its true distribution is between the normal distribution and 
the lognormal distribution and is closer to the lognormal 
distribution[21]. This article assumes that the equivalent 
parameters obey the lognormal distribution and analysis 
is performed based on this. 

 

Fig. 5  Case 1 a simple slope (FS = 1.357) 
 

The failure probability of the deterministic sliding 
surface is denoted as Pf-F. The calculation results show 

that the failure probability of the deterministic sliding 
surface is 0.033 0, which is in good agreement with the 
0.0316 given in the literature [5]. 

The system failure probability (denoted as Pf-S) is 
calculated by gradually searching the representative sliding 
surface of the slope, and the convergence condition is set 
to ε = 1%. After 13 searches, the loop is terminated, and 
13 representative sliding surfaces are obtained. At this 
time, the slope failure probability is 0.072 4, which is 
slightly smaller than the result (0.076 0) reported in the 
literature [5]. Figure 6 shows the convergence curve of the 
failure probability of the slope system. When there is only 
one representative sliding surface (that is, the critical pro- 
bability sliding surface), the slope failure probability is 
0.033 4. As the number of representative sliding surfaces 
increases, the failure probability of the surrogate system 
also increases but gradually converges to the overall failure 
probability of the slope system. 

 

Fig. 6  Convergence of system failure probability(case 1) 
 

Figure 7 shows the locations of the first four repre- 
sentative sliding surfaces. The failure probabilities of 
these four representative sliding surfaces are 0.033 4, 
0.027 3, 0.017 3, and 0.032 2. The correlation coefficient 
matrix among them is 

1 0.734 0.562 0.901
0.734 1 0.847 0.877

=
0.562 0.847 1 0.683
0.901 0.877 0.683 1

 
 
 
 
 
 

Λ           （17）

 

It can be noted that because the geometric positions 
of S1 and S4 are relatively close, the correlation of the soil 
parameters is relatively strong, resulting in the numerical 
value of the failure probability being relatively close, and 
the correlation between the two failure modes is also rela- 
tively strong (λ14 = 0.901). On the other hand, although 
the failure probability of S4 is greater than those of S2 
and S3, its correlation with S1 is too strong, resulting in 
its contribution to the failure probability of the surrogate 
system is not as good as S2 and S3. Meanwhile, although 
the correlation coefficient between S3 and S1 is smaller 
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than the correlation coefficient between S2 and S1, the 
failure probability of S3 is smaller than that of S2, which 
leads to a greater contribution of S2 to the failure pro- 
bability of the surrogate system than that of S3. This phe- 
nomenon demonstrates that when selecting representative 
sliding surfaces, it is more reasonable to comprehensively 
consider the failure probability (reliability index) and 
correlation coefficients of each potential sliding surface. 

 

Fig. 7  Locations of the first four representative slip 
surfaces(case 1) 

 
Table 1 lists the response surface equations of the first 

four representative sliding surfaces and their analysis 
 

results, where c is the equivalent parameter of the und- 
rained shear strength of the soil. Perform three types of 
Monte Carlo simulations on these 4 representative sliding 
surfaces (1×105 times): i) Equivalent parameters + response 
surface method; ii) Equivalent parameters + Bishop method; 
iii) Random field discretization + Bishop method. The first 
two types of Monte Carlo simulation are used to verify 
the applicability of response surface equations, and the 
third type of Monte Carlo simulation is used to verify the 
applicability of equivalent parameters. When discretizing 
the random field, the shear strength parameters at the 
midpoint of the bottom of the soil slices on the sliding 
surface are sampled. Since there are only 4 representative 
sliding surfaces, each sliding surface can be divided into 
a number of slices to obtain the coordinate set of the bottom 
midpoints of the four sliding surface slices, and then sam- 
pling by covariance matrix decomposition method to obtain 
the random field parameters at corresponding locations 
of soil slices. The thickness of the soil slice determines 
the discretization accuracy of the random field, and the 
thickness of the soil slice here is taken as 0.1 m.

Table 1  The results of the first four representative slip surfaces(case 1) 

Representative 
slip surface 

Response surface 
equation gi(X) 

Variance reduction 
factor γX μln(X) σln(X) 

Probability of failure 
MCS：Equivalent 

parameters + 
Response surface method

MCS：Equivalent 
parameters + Bishop 

MCS：Random field 
discretization + Bishop

S1 g1 = 0.059 0c − 1 0.286 4 3.123 0.159 5 0.033 2 0.033 2 0.031 7 

S2 g2 = 0.062 3c − 1 0.362 1 3.120 0.179 1 0.027 4 0.027 4 0.025 7 

S3 g3 = 0.066 4c − 1 0.415 2 3.117 0.191 5 0.017 4 0.017 4 0.016 1 

S4 g4 = 0.060 2c − 1 0.318 9 3.121 0.168 2 0.032 3 0.032 3 0.030 5 

 
It can be seen from the table that the calculation results 

of failure probability using equivalent parameters (Monte 
Carlo simulation based on the vertical slice method and 
Monte Carlo simulation based on the response surface 
method) are very close, which demonstrates that the res- 
ponse surface equation is applicative to be a surrogate 
model of the vertical slice method. On the other hand, 
the failure probability obtained by the discretization of 
random field using Monte Carlo simulation is slightly 
smaller than the first three. This result shows that the 
equivalent parameters may still lead to certain errors, but 
it is generally acceptable. By analyzing the four sets of 
safety factors obtained by the Monte Carlo simulation of 
the random field and calculating the Pearson correlation 
coefficient matrix, we can obtain 

1 0.733 0.560 0.901
0.733 1 0.847 0.876

=
0.560 0.847 1 0.682
0.901 0.876 0.682 1

 
 
 ′
 
 
 

Λ          （18） 

It can be found that this result is almost the same as 

the correlation coefficient matrix between the first four 
failure modes calculated in this paper, which also verifies 
the correctness of the method in this paper. 

By changing the horizontal and vertical fluctuation 
range of the random field, the analysis is performed again 
using the method of this paper, and the results are sum- 
marized in Table 2. It can be seen that as the correlation 
of the random field increases (the correlation length 
increases), the number of representative sliding surfaces 
satisfying the same accuracy (ε = 1%) decreases, and the 
slope failure probability increases. From Eq.(12), it is 
concluded that a stronger correlation enhances the cor- 
relation between failure modes, which leads to a reduction 
in the number of representative sliding surfaces required 
by the surrogate system. Meanwhile, an increase in the 
correlation length of the random field can lead to an inc- 
rease in the variance reduction function of the equivalent 
parameter, that is, a larger value of variance of the equi- 
valent parameter, thus the failure probability increases. 
4.2 Case 2 

The slope case in Fig.8 is selected from literatures 
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Table 2  Comparison of results under different correlation 
lengths(case 1) 

δ1 
/m 

δ2 
/m 

Number of 
representative 

sliding 
surfaces 

Probability of failure 
Error /%

Type of 
failure 

probability 
Results from 
this article 

Results from 
literature [5] 

40 4 13 
0.033 0 0.031 6 4.4 Pf-F 
0.072 4 0.076 0 −4.7 Pf-S 

40 8 10 
0.063 0 0.062 1 1.4 Pf-F 

0.101 1 0.109 1 −7.3 Pf-S 

80 4 9 
0.044 4 0.042 2 5.2 Pf-F 

0.084 2 0.089 4 −5.8 Pf-S 

 
[9, 22]. The slope height is 10 m, the slope is 1:2, and 
the soil unit weight is 20 kN /m3. The undrained shear 
strength of soil Su obeys a lognormal distribution, and 
its mean value and coefficient of variation are 40 kPa 
and 0.3. The exponential correlation function is employed 
to characterize the spatial correlation of the random field 
of soil parameters. Meanwhile, the inhomogeneity of the 
soil parameters in the horizontal direction is ignored, and 
only the vertical inhomogeneity is considered, that is, 
δ1 = ∞ and δ2 = δ < ∞. The deterministic analysis results 
show that the safety factor of the slope is 1.178, which 
accords with 1.18 in literature [9] and 1.178 in literature 
[22]. 

A series of simulations with different values of vertical 
correlation length δ  are performed by the proposed method, 
and the failure probabilities are calculated while the results 
are displayed in Fig.9. It can be observed that the cal- 
culation results of this paper are in good agreement with 
the results of literature [22]. As δ increases, the probability 
of slope failure increases, but its growth rate gradually 
decreases. 

 
Fig. 8  Case 2 a simple slope (FS = 1.178) 

 

Fig. 9  Effect of vertical correlation length on failure 
probability(case 2) 

When δ = 5 m, nine representative sliding surfaces 
are identified using the method proposed in this paper. 
The failure probability of the surrogate system composed 
of these nine representative sliding surfaces is 0.198 6, 
which is similar to the 0.197 8 in literature [22] and 0.189 0 
in literature [9], and the contribution of the first repre- 
sentative sliding surface to the system failure probability 
is 60.6%. When δ = 10 m, eight representative sliding 
surfaces are identified using the method proposed in this 
paper. The failure probability of the surrogate system 
composed of these eight representative sliding surfaces 
is 0.243 2, which is similar to the 0.260 2 in literature [22] 
and 0.239 0 in literature [9], and the contribution of the 
first representative sliding surface to the system failure 
probability reaches 74.1%. It can be found that as δ 
increases, the correlation of the random field parameters 
increases, and the contribution of the first representative 
sliding surface to the failure probability of the slope system 
increases, and the number of representative sliding surfaces 
required by the surrogate system also decreases. In fact, 
for a single-layered undrained slope, when δ = ∞, the 
correlation coefficient between any two failure modes 
is 1 according to Eq.(12), and only one representative 
sliding surface is needed to completely represent the 
overall failure probability of the slope system. 
4.3 Case 3 

Figure 10 shows a double-layered undrained slope. 
In literatures [19, 23−24], random variables were used to 
describe the uncertainty of soil parameters and the reliability 
of the slope was studied. Jiang et al.[25] considered the 
spatial variability of soil parameters and studied the reli- 
ability of this slope in a low level of failure probability. 
As shown in Fig.10, the saturated unit weight of the two 
layers of soil on the slope is 19 kN /m3, the undrained 
shear strength of the first layer of soil is 120 kPa, and the 
one of the second layer of soil is 160 kPa. The lognormal 
distribution is used to describe the undrained shear strength 
of the two layers of soil. The mean value and coefficient 
of variation of the first layer of soil are 120 kPa and 0.3, 
and the ones of the second layer of soil are 160 kPa and 
0.3. The Gaussian correlation function is used to describe 
the spatial correlation of the soil parameters, and the hori- 
zontal and vertical correlation lengths are taken as δ1 = 

 
Fig. 10  Case 3 a two-layered slope (FS = 1.993) 
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40 m and δ2 = 4 m. The results of deterministic analysis 
show that the safety factor of the slope is 1.990, which 
is close to 1.997 in literature [19], 1.992 in literature [24] 
and 1.993 in literature [25]. 

The method in this paper is used to calculate the system 
failure probability of the slope, and the calculation is ter- 
minated after five representative sliding surface searches, 
and the system failure probability of the slope is 1.65× 
10−7. This result is in the same order of magnitude as 1.14× 
10−7 in the literature [25], but the relative error is large. 

 

Fig. 11  Locations of the first three representative slip 
surfaces(case 3, COV = 0.4) 

 
Table 3  The results of the first three representative slip surfaces(case 3, COV = 0.4) 

Representative 
slip surface Response surface equation gi(X) 

Variance reduction 
factor γX μln(X) σln(X) 

Probability of failure 

MCS：Equivalent 
parameters + 

Response surface 
equation 

MCS：
Equivalent 

parameters + 
Bishop 

MCS： 
Random field 

discretization + 
Bishop 

S1 g1 = 0.004 98c1 + 0.008 74c2 − 1 [0.201 4, 0.414 7]T [4.771 6, 5.043 1]T [0.178 1, 0.253 5]T 4.88×10−5 4.88×10−5 3.10×10−5 

S2 g2 = 0.004 45c1 + 0.009 11c2 − 1 [0.201 7, 0.362 0]T [4.771 6, 5.047 0]T [0.178 2, 0.237 3]T 3.47×10−5 3.47×10−5 1.84×10−5 

S3 g3 = 0.005 70c1 + 0.008 45c2 − 1 [0.202 1, 0.457 3]T [4.771 6, 5.039 9]T [0.178 4, 0.265 7]T 3.38×10−5 3.38×10−5 1.95×10−5 

 
Re-calculation is conducted using the method in this 

article by increasing the coefficient of variation of the 
undrained shear strength of the soil from 0.3 to 0.4, while 
other parameters are kept unchanged. After searching for 
five representative sliding surfaces, the calculation is ter- 
minated, and the failure probability of the slope is 1.39× 
10−4. Figure 11 shows the position distribution of the first 
three representative sliding surfaces. The equivalent para- 
meters, response surface equations and analysis results 
of these three sliding surfaces are summarized in Table 3, 
where c1 and c2 are equivalent parameters of the undrained 
shear strength of the first and second layers of soil. Con- 
sequently, the correlation coefficients of the three rep- 
resentative sliding surfaces are λ12 = 0.891, λ13 = 0.912 
and λ23 = 0.696. 

Since the failure probability is in the level of 10−5− 
10−4, in order to make the Monte Carlo simulation results 
reliable, 2×107 Monte Carlo simulations were performed 
on these three representative sliding surfaces. When dis- 
cretizing the random field, the thickness of the soil slice 
is set to 0.2 m. It can be concluded from the table that, 
due to the linear relationship between the safety factor 
and the equivalent parameters, the Monte Carlo simulation 
based on the vertical slice method and the Monte Carlo 
simulation based on the response surface method have 
the same results. By analyzing the three groups (2×107 

in each group) of safety factors obtained from Monte Carlo 
simulation integrated with random field discretization and 
calculating the Pearson correlation coefficient, we can 
get: 12λ′ = 0.872, 13λ′ = 0.892 and 23λ′ = 0.644. This result 
is similar to the result in this paper. Furthermore, the 

failure probability of the sliding surface obtained by the 
Monte Carlo simulation integrated with random field 
discretization is smaller than that with the equivalent 
parameter, which is similar to the results of Table 1. 

In literature [19], the spatial variability of soil para- 
meters was not considered. Two representative sliding 
surfaces (passing only through the first layer of soil and 
through two layers of soil at the same time) were artificially 
selected for analysis, and the failure probability of the 
slope was obtained as 4.02×10−3−4.11×10−3. Using the 
method in this paper, take δ1 = ∞ and δ2 = ∞, after searching 
for two representative sliding surfaces, calculation ter- 
minates due to convergence, and the obtained system 
failure probability of the slope is 4.20×10−3. 
 
Table 4  Summary of failure probability(case 3) 

δ1
/m

δ2
/m

COV Number of 
representative 

sliding surfaces

Probability of failure 

Su1 Su2
In this 
article 

From 
literature[25]

From 
literature[19]

40 4 0.3 0.3 5 1.65×10−7 1.14×10−7 － 
40 4 0.4 0.4 5 1.39×10−4 1.12×10−4 － 

∞ ∞ 0.3 0.3 2 4.20×10−3 4.04×10−3 4.02×10−3− 
4.11×10−3

5  Conclusion 

Based on the equivalent parameters after local averaging 
of random fields and the first-order reliability method, 
this paper analyzes the correlation between failure modes 
of different sliding surfaces, and proposes a reliability 
method for clay slope considering the spatial variability 
of undrained strength. The feasibility of the proposed 
method is discussed by analyzing the failure probability 
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of three slope cases, and the main conclusions are drawn 
as follows: 

(1) The equivalent parameters of the undrained shear 
strength random field averaged locally along the sliding 
surface can describe the uncertainty of the soil parameters 
of the corresponding sliding surface. The correlation between 
the equivalent parameters has a significant effect on the 
correlation coefficient between the failure modes. The 
method proposed in this paper can gradually approximate 
the system failure probability of the slope. 

(2) As the spatial correlation of the random field inc- 
reases, the correlation coefficient between different failure 
modes increases, and the contribution of the first repre- 
sentative sliding surface to the system failure probability 
increases, hence, the number of representative sliding 
surfaces required by the condition of convergence also 
decreases. For a single-layered undrained slope, when the 
spatial variability is ignored, only one representative sliding 
surface is needed to obtain the system failure probability 
of the slope. 

(3) The method in this paper is only applicable to the 
case of saturated undrained (ϕ = 0) clay slopes. On this 
condition, the safety factor of the slope has a linear rela- 
tionship with the equivalent parameters. When ϕ ≠ 0, 
the safety factor of the slope and the equivalent shear 
strength parameter no longer show a linear relationship. 
It is not clear whether the equivalent parameter after the 
local average of the random field along the sliding surface 
can represent the parameter variability of the entire sliding 
surface. Further analysis is needed to study this problem. 
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Appendix 

(1) Mean and variance of equivalent parameters 
According to the definition of Eq.(2), the equivalent 

parameter is the local average of the random field para- 
meters on the sliding surface. Therefore, 
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According to the relationship between the correlation 
function and the variance function, there are 

[ ][( ( , ) )( ( , ) )] = =( , ), ( , )E P x y P x y C x y x yμ μ′ ′ ′ ′− −  

[ ]2 2= ( , )( , ), ( , ) x x y yx y x yσ ρ σ ρ ′ ′′ ′ − −       （A3） 
At the same time, the integration path is expressed 

in polar coordinates: x = X + Rcos(α), y = Y + Rsin(α), 
ds = Rdα, substituting these into Eq.(A2), then we can 
get 

[
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] 1 21 2 d d(sin sin )R α αα α−                   （A4） 
(2) Correlation coefficient between equivalent parameters 
First calculate the covariance of equivalent parameters, 

which is similar to Eq.(A2), with 

1 2 1 1 2 2
COV( , ) = ( ( ))( ( )) =L L L L L LP P E P E P P E P − −   

1 21 2

1 [( ( , ) )( ( , ) )]d d =
L L

E P x y P x y s s
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2

1 1 1 2
12 11 22 21
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σ ρ α
θ θ θ θ

+ − −
− −    

2 2 1 1 1 2 2 2 1 2cos , sin sin )d dR Y R Y Rα α α α α+ − −   （A5） 

Therefore, the correlation coefficient between the equi-  
valent parameters 

1LP and 
2LP is 

12 22
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11 211 2

12 1 2 1 2

1 2 22 21 12 11

1 1 1 1 2 2 2

2 1 1 1 2 2 2
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= ( , )d d /
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θ θ
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γ γ θ θ θ θ
ξ α α
ξ α α


= 


− −


− − 
− − 

 
（A6） 

(3) Correlation coefficient between failure modes 
Random variable X is transformed to obtain mutually 

independent standard normally distributed variable Y, 
and its response surface equation is 

= ( ) = ( )i i ig g fX Y                        （A7） 
Expand to Taylor series at the verification point y* and 
take the first order term, we can get 

* T= ( ) ( ) ( )* *
Li i ig f f+ − ∇y Y y y              （A8） 

where ▽fi(y*) is the gradient vector of the function fi(Y) 
at the checking point y*. Find the mean and variance of 
gLi. Note that Y is a mutually independent standard normal 
distribution, that is, the mean of Yi is 0 and the standard 
deviation is 1. Substituting into the Eq.(A8) and further 
finding the reliability index, there is 

*T ( )= =
( )

Li

Li

*
g i

i *
g i

f
|| f ||

μ
β

σ
∇

−
∇

yy
y

                 （A9） 

where ||▽fi(y*)|| is the modulus of ▽fi(y*), and ▽fi(y*)/ 
||▽fi(y*)|| is the unit vector. Therefore, −y*/βi = ▽fi(y*)/ 
||▽fi(y*)||. In the same way, expand the response surface 
equation of another failure mode at its checking point 
and take the first order term to obtain 

* T= ( ) ( ) ( )* *
Lj j jg f f+ − ∇z Z z z             （A10） 

Its reliability index is 

*T ( )= =
( )

Lj

Lj

*
g i

j *
g i

f
|| f ||

μ
β

σ
∇

−
∇

zz
z

                （A11） 

In Eqs. (A8) and (A10), Y and Z are related. If the 
deviation of the correlation coefficient of random variables 
caused by the conversion from the original space to the 
standard normal space is ignored, there is 

(11)

(22)
( )

( )
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ij

kk ij
ij

nn
ij
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  

Y Z （A12） 

Therefore, the correlation coefficient between gLi and 
gLj is 

T * ( ) *

* *

( ) ( )COV( , )
= =

|| ( )|| || ( )||( ) ( )

kk
i ij jLi Lj

ij
i iLi Lj

f r fg g
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y z
y z

（A13） 

Substituting Eqs. (A9) and (A11) into Eq.(A13), we 
have 

T * ( ) * *T ( ) *

* *

( ) ( )
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|| ( )|| || ( )||

kk kk
i ij j ij

ij
i ji i

f r f r

f f
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  （A14） 
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