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Dynamic response of a track coupled with a transversely isotropic ground due to 
train axle loads 
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Abstract: To study the environmental vibrations induced by train loads, an analytical model for a track coupled with a layered 

transversely isotropic (TI) ground is developed. The model can consider the alternate distribution of TI elastic and poroelastic layers 

in the ground to describe soils and rocks under different moisture conditions compared with existing models comprising only one 

type of medium. Based on the analytical model, the governing equations of TI media are solved firstly using Fourier transform and a 

potential function method. Then the exact stiffness matrix method is adapted to derive solutions to the layered ground with different 

media. Finally, the dynamic response of the coupled system is obtained by using the governing equations of the track and inverse 

integral transformation. The influences of groundwater existence and transverse isotropy on the vibration of track and ground are 

investigated. It is found that the influence of the groundwater existence in the TI poroelastic layer on the track force amplification 

factor is significant at load frequency lower than 200 Hz. The ground surface vibration attenuates faster with the distance from the 

track center for a larger ratio of the horizontal elastic modulus to the vertical one. The maximum vertical stress magnitude occurs 

within 1 m from the ground surface. The critical speed of the displacement and stress increases with the increasing ratio of the 

horizontal elastic modulus to the vertical one. 

Keywords: track; transversely isotropic; analytical model; alternate distribution; exact stiffness matrix; dynamic response 
 

1  Introduction 

Recently, the construction of high-speed railway 
boosts the development of economy and provides con- 
venience to people. However, the increase of the train 
speed leads to more serious environmental vibrations[1], 
and this problem has a side effect on the train safety 
and the infrastructure around the railway. Thus, the 
dynamic response for coupled track–ground system 
has drawn widespread attention. 

Analytical, numerical and experimental methods 
have been utilized to study the dynamic response for a 
track coupled with a ground, all of which the analytic 
method is widely used because of its high efficiency. 
For example, Dieterman et al.[2] solved the dynamic 
response problem of coupled beam–half space by sim- 
ulating the track and the ground as the Euler beam and 
the half-space with homogeneous elastic medium, 
respectively, and introducing the equivalent dynamic 
stiffness. Sheng et al.[3] and Jones et al.[4] developed a 
more realistic analytical model for the track system. In 
this model, the ground was considered as a layered half- 
space ground with homogeneous elastic phase medium, 
and then the dynamic response of the track coupled a 
layered ground under the moving loads was analyzed. 
Feng et al.[5] analyzed the dynamic response of the 
track–elastic medium ground induced by a train under 
the condition of track irregularity. Huang et al.[6] com- 
pared the dynamic response of the Timoshenko beam 

with one-dimensional and three-dimensional elastic 
ground. The above study all considered the ground as 
a homogeneous or a layered elastic medium. For the 
groundwater, the Biot wave theory[7] of poroelastic 
medium was introduced. Jin[8] analyzed the dynamic 
response for the Euler beam with infinite length on the 
homogeneous saturated poroelastic medium. Xu et al.[9] 
analyzed the vibration problem of coupled system 
consisting of a layered saturated soil mass and the 
Euler beam, and solved the layered ground using TRM 
method. Cai et al.[10] investigated the vibrations of the 
trackhomogeneous saturated half-space coupled model 
under train loading. Cao et al.[11] studied the influence 
of the train loading induced by acceleration and speed 
reduction on the ground of the track on the saturated 
half-space. Ba et al.[1] discretized the interface of track 
foundation using IBEM, and analyzed the dynamic 
response of track system on layered saturated ground. 
Yao et al.[12] established a vibration prediction model of 
vehicle–rail– saturated half-space ground coupled system 
considering contact between the wheel and the rail. 

In the aforementioned studies, the soil mass is re- 
garded as an isotropic medium, but the ground is generally 
transversely isotropic due to the natural deposition of 
soil mass[13–15]. Thus, researchers investigated the dynamic 
response[22–25] of transversely isotropic(TI) elastic[16–21] or 
poroelastic medium under loading or vibration. Some 
researchers studied the vibration problem for a track 
coupled with the TI ground. Ba et al.[26] simulated the 
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ground as a layered TI elastic half-space and analyzed 
the genera- tion and propagation of dynamic response. 
Zhou et al.[27] researched the dynamic response of 
coupled system consisting of the track, the concrete 
layer and TI por- oelastic half-space. Zhan et al.[28] 
developed a model for the slab track coupled with 
layered TI saturated ground, and analyzed the influence 
of various parameters on vibration. 

At present, the analytic research on the dynamic 
response for track–TI ground coupling system is limited, 
and in most of the previous studies, the ground was re- 
garded as one medium (the elastic or poroelastic saturated 
medium). However, in practice, various strata have 
different saturated conditions. Thus, these strata could 
be regarded as various TI mediums. Recently, Li et al.[29] 
developed a ground model with alternate TI elastic 
medium and poroelastic medium. In this model, TI 
elastic medium, TI poroelastic medium and TI elastic 
half-space were used to simulated the soil layers above 
the groundwater table, saturated soil layers and the 
bottom layer such as bedrock. However, Li et al.[29] 
just analyzed the dynamic response of ground model 
induced by moving source, but the vibration propagation 
of the coupling system caused by the train loading was 
not investigated. In addition, Li et al.[29] just gave the 
solution for the 3-layer ground model. 

Based on the previous studies, this paper establishes 
an analytical model of coupled track multi-layer ground 
considering the alternate distribution of TI elastic, 
poroelastic and elastic mediums. Compared with the 
existing track–elastic medium ground coupling model, 
this model can simulate TI layers with different water 
contents, taking into account the influences of groun- 
dwater and underlying layer. In order to solve the model, 
Fourier transform and potential function method are 
used to solve the dynamic equations of TI poroelastic 
and elastic media, respectively. Then, the exact stiffness 
matrix method is adapted to derive solutions of layered 
ground with arbitrary layers and different TI mediums. 
By combining the track control equation, the analytical 
solution of the dynamic response of the track–ground 
coupling system in the transformation domain is derived. 
Finally, the inverse Fourier transform is used to obtain 
the response in the space–time domain. 

2  Mechanical model and the solution of 
governing equation 

The model used in this paper is shown in Fig. 1. 
The track system consists of rail, rail pad, sleeper and 
ballast, and the ground model consists of three TI layers. 
In the ground model, the three TI layers include N1 TI 
elastic medium layers, N2 TI poroelastic medium layers 
and N3 TI elastic medium layers, respectively, and the 
TI elastic half-space is at the bottom of the model. These 
three layers are utilized to simulate the TI layer above 
the groundwater table, the TI saturated layer and the 
underlying TI layer. The z coordinate of the lower 
boundary of i-th layer is zi (i = 1, 2,…, N1+N2+N3), 
the thickness of hi = zi - zi-1. 

 
Fig. 1  Schematic diagram of model 

 
2.1 Governing equations and solutions 

The dynamic governing equations of poroelastic tra- 
nsversely isotropic (TI) medium in the coordinate are as 
follows[23]: 
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where ij (i, j  x, y, z) and p are the stress tensor and 
the excess pore pressure, respectively; iu  is the dis- 
placement of soil skeleton; ( )i i iw n U u   represents 
the relative displacement between fluid and solid; iU  
and n are the fluid displacement and the soil porosity, 
respectively; s f(1 )n n      is the equivalent 
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density, and s , f  are the skeleton and the fluid 
density, respectively; f /l lr k , and f , lk  are the 
dynamic viscosity of pore fluid and the inherent 
permeability coefficient of soil; f /l lm n  , and 

l  is the bending coefficient of porous medium. In 
the subscript of above symbols, l  1，3 corresponds 
to the horizontal and vertical variables, respectively. 

1 , 3  and M are the Biot parameters; Ks and Kf are 
the bulk modulii of soil skeleton and fluid, 
respectively; and 11c , 12c , 13c , 33c , 44c  and 66c  
are the elastic parameters. It should be noted that, in 
the engineering, the elastic modulus ( hE , vE  
corresponding to the horizontal and vertical), the shear 
modulus ( vG ) and the Poisson’s ratio ( hv , vhv  
corresponding to the horizontal Poisson’s ratio and the 
Poisson’s ratio descripting the horizontal strain caused 
by the vertical stress) are typicaly used to describe the 
transversely isotropic medium, so these concepts were 
introduced into this paper. The relationship between 
elastic parameters and engineering parameters could be 
found in the reference [17]. 

The definitions of Fourier transform about x, y and 
t are as follows: 
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where   is the circular frequency;   and   are 
the wave numbers corresponding to x and y directions, 
respectively; and i is the imaginary unit, i= 1 . 

Second-order linear differential equations of u-p form 
in frequency domain could be obtained after Fourier 
transforming Eqs. (1)–(4) with respect to t and arr- 
anging the results. These equations were solved using 
the potential function method[16]. Based on the method, 
the displacement and the excess pore pressure are as 
follows after introducing two potential functions g and 
 :  
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where xu , yu  and zu  are the displacements in the 

three different directions in frequency domain; p  is 
the pore pressure in the frequency domain; 1a , 2a , 

3a , l
 , 1  and 3  are the intermediate variables; 

2 2 2 2 2
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By substituting Eqs. (8)–(11) into Eqs. (1)–(4) and 
combining with Fourier transform, the analytical 
solution to the dynamic equation of TI poroelastic medium 
in frequency domain-wavenumber domain could be 
derived, and the element stiffness matrix of the relation- 
ship between the displacements and stresses of the upper 
and lower boundary could be further established for 
arbitrary TI poroelastic layer: 
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where D
pS  and U

pS are stress-dependent submatrix, D 
and U in the superscript represent the submatrix cor- 
responding to the downgoing and the upgoing waves, 
and p in the subscript represents the matrix corresponding 
to TI poroelastic medium; D

pD  and U
pD  are the dis- 

placement-related submatrix; D
pZ  is the diagonal 

matrix of exponential term; nh  is the thickness of n-th  

layer; p
̂u  is the displacement vector and p

ˆ
Σ  is the  

stress vector. nz  and 1nz  denote the upward side of 
the boundary nz z  and the downward side of the 
boundary 1nz z  . The definitions of above symbols 
are as follows: 
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where pˆ
zw  is the relative displacement between solid 

and fluid in z direction; pˆ
xz , pˆ

yz  and pˆ
zz  are the 

stresses of poroelastic medium; pp̂  is the pore pressure  

of poroelastic medium; the symbols over the variables 
represent the variables in frequency–wave number 
domain. 

The relevant elements of the displacement–stress 
matrix are defined as follows. Dp

1iD  represents the 
element in the 1st row and the i-th column of D

pD , 
and other symbols are defined similarly. 
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where i , i  and i  are the intermediate variables. 
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where i  and i  are the intermediate variables. 

i ( i  1, 2, 3) are the eigenvalues of the following 
six order ordinary differential equation: 
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The other symbols in Eqs. (19)–(20) are defined as 

follow[29]: 
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13 3 33 , 1, 2, 3i i i i ic c i              （26） 
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（27） 

 
   

 

1 33 44 3

2 2 2 2
2 33 44 6 44 3 5 33 3 4 1 3 3 44

2 2
3 4 5 3 44 5 6 33 4 6 1 2 3

2 2 2 2 2 2 2
2 33 1 6 3 4

2 2 2
4 4 5 6 2 5

( )

2

b c c

b c c a c a c a a a c

b a a c a a c a a a a a

a c a a a a

b a a a a a



    

  

   

 

 
      
      
    
   

 

（28） 
The above is the general solution of TI poroelastic 

medium, and the dynamic governing equation of TI  
elastic medium is as follows[20]: 

e e e
,ij j iu                                 （29） 

where e  is the density of elastic medium; e
iu  is the 

second partial derivative of displacement with respect 
to time; e

,ij j  is the first partial derivative of stress with 
respect to spatial coordinates. In addition, 

e ee e e
e e e e e
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（30） 
The element stiffness matrices of TI elastic layer 

and half-space are shown as follow: 
1
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 1D D
e e e e

half-space
e

ˆˆ ( ) ( )n nz z
   

         
 

S D

K

u Σ


            （32） 

where D
eS , U

eS  are stress-related submatrices, in which 
the definitions of superscript are similar to those in  
Eq. (15), and the subscript “e” represents TI elastic medium 
related matrix; D

eD  and U
eD are the displacement- 

related submatrices; D
eZ  is the exponential diagonal 

matrix; e
̂u  and e

ˆ
Σ  are the displacement and stress 

vectors, respectively; and half-space
eK  is the stiffness 

matrix of half-space. 
2.2 Dynamic response of layered half space 
incorporating different TI mediums 

After acquiring the element stiffness matrices in 
Eqs. (15), (31) and (32), the dynamic response of layered 
ground is solved based on the exact stiffness matrix 
method[30]. In this model, the alternating layers of elastic 
and poroelastic TI mediums are considered. It is noted 
that the displacement and stress vectors at the interface 
between the two medium layers contain 3 and 4 control 
variables, respectively (the elastic medium layer does 
not contain fluid-related control variables), and the 
dimensions of corresponding element stiffness matrices 
are 6×6 and 8×8, respectively. The difference in dim- 
ensions of them has a side effect on the assembly of 
the total stiffness matrix and the solution of the problem. 
Therefore, the classical exact stiffness matrix method 
is extended in this section. The element stiffness matrix 
of TI poroelastic medium layer is preprocessed, and the 
number of control variables at the interface between 
different medium layers can be equal. And it is con- 
venient to directly assemble and inverse the total stiffness 
matrix. 
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In the model shown in Fig.1, the boundaries at 

1 1Nz z   and 
1 2N Nz z   are the interfaces between 

the different mediums. The interface at 
1 2N Nz z   is 

taken as an example for solving. 
Based on Eq. (15), the element stiffness matrix for 

layer N1+N2 TI poroelastic medium could be described as 

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2

1 2 1 2

+ +
p 1 p 1

p p

( ) p p
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       （33） 

The variables with subscripts, “–” and “+”, represent 
the control variables above and below the interface,  

respectively. 
1 2

+
p 1

ˆ ( )N Nz  
u  and 

1 2

+
p 1

ˆ
( )N Nz  Σ  are the 

displacement and stress vectors of the upper boundary 
of the layer N1 + N2, and each vector includes four control 
variables. Detail information for the vectors of the upper 
boundary is not needed because it is not necessary to 
dispose, and the equations about them are similar to  

Eqs. (16) and (17). 
1 2

pˆ ( )x N Nu z


  and 
1 2

pˆ ( )x N Nu z


  are 

 the displacement and the stress control variables of 
the lower boundary of layer N1 + N2. 1 2( )

p
N NK  is a 

stiffness matrix with 8×8. 
Firstly, 8-th line in Eq. (33) is extracted for eliminating 

the pore pressure variable 
1 2

pˆ ( )N Np z


 , and the following 

equation could be obtained: 
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（34） 

where 1 2( )
p

N NK (1–7, 1–8) represents the elements in 
rows 1–7 and columns 1–8 of the matrix 1 2( )

p
N NK , 

and other similar symbols have similar definitions. 
Then, the variable of vertical relative displacement  

of fluid 
1 2

pˆ ( )z N Nw z


 is eliminated. The selection of 

elimination method depends on the drainage con- 
ditions at the lower boundary 

1 2N Nz z  . 
If the lower boundary is a drainage boundary, 

1 2

pˆ ( ) 0N Np z
   and the 8-th row in Eq. (33) is given 

as follows: 
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 （35） 

Substituting Eq.(35) into Eq.(34), the adapted 
element stiffness matrix of layer 1 2N N  could be 
obtained when the lower boundary is the drainage 
condition. 
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where “ad” in the subscript means the adapted stiffness 
matrix, and “p” after “ad” means the drainage boundary. 
And 
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If the lower boundary is impermeable boundary, 

1 2

p
N N

ˆ ( ) 0zw z
   and the 8-th row in Eq. (33) is shown 

as follows: 
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Substituting the impermeable boundary condition 
into Eq. (34), the similar equation with Eq. (36) could 
be obtained. The difference is the substitution of 

1 2( )
p-ad-im

N NK  for 1 2( )
p-ad-p

N NK  in the Eq. (36). And 

 1 2 1 2( ) ( )
p-ad-im p 1 ~ 7,1 ~ 7N N N N K K               （39） 

where “im” in the subscript represents the adapted 
stiffness matrix of the impermeable boundary. 

For the interface at 
1 1Nz z  , the same method is 

used. The upper and lower sides of the interface between 
the TI elastic and poroelastic layers have the same 
number of control variables of displacement and stress 
after handling the element stiffness matrix of TI por- 
oelastic medium of layers 1 1N   and 1 2N N . Assembly 
and inversion of total stiffness matrix could be achieved 
using displacement–stress continuity condition, and 
the dynamic response is obtained: 

1
global
U K Σ                              （40） 

where globalK  is the total stiffness matrix of layered 
ground; U and Σ  are the displacement and stress vectors 
of layered ground. And 
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T
e

ˆ
[ (0),0, ,0,0, ,0, ,0]    Σ Σ             （42） 
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The subscripts in Eq. (41), “e-p” and “p-e”, mean 
the interface between the TI elastic medium and the TI 
poroelastic medium, the interface between the TI poro- 
elastic medium and the TI elastic medium, respectively. 
The superscript “–1” in globalK  of Eq. (40) means inverse 
matrix, also called flexibility matrix. 
2.3 Dynamic response of track–TI ground coupled 
system 

In this paper, the track system is simplified as a 
beam–mass–spring system[3], in which rails and sleepers 
are simulated with Euler beam elements and mass blocks, 
respectively, and both are connected using rail pads, 
where rail pads are simplified as springs without mass. 
The effect of ballast is simplified as vertical stiffness, 
and its mass is also considered for simulating the inertial 
action. Control equations of the above simplified model 
are shown as follows: 

 
4
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u
EI m u k u u P

x


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 s s p r s sm u k u u F                        （44） 
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     （45） 

where ru , su  and bu  are the vertical displacement 
of track, sleeper and ballast; EI is the rail bending stiff- 
ness; pk  and bk  are the vertical stiffness of rail pad 
and ballast; rm 、 sm  and bm  are the mass of rail, 
sleeper and ballast per unit length; P is the loading on 
the rail per unit length. In this paper, the axle load of 
the train was simulated as a set of point load, so P    

1
δ( )

N

i i
i

P x ct a


  , where N is the total number of load;  

iP  and ia  are the i-th load amplitude and the cooridinates 
at t  0 s; δ is the Dirac function; rs p r s( )F k u u  , 

sF  and bF  are the forces transmitted from the rail to 
the sleepers, from the sleepers to the ballast and from 
the ballast to the ground per unit length. 

The boundary conditions on the contact surface of 
the track and the ground could be set as: 
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（46）

 

where b2L  is the contact width between ballast and 
ground; e

xz , e
yz  and e

zz  are the horizontal shear 
stresses in the x direction and the y direction and the 
vertical normal stress on the surface; e

zu is the surface 
displacement; and bu  is the displacement of ballast. 

Based on Eq.(46), the equivalent flexibility 
coefficient C for the interaction between the track and 
the surface of the ground could be derived as 

 b b
ˆ ˆ( , ) , ( , )C F u                       （47） 
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where e
unit

ˆ ( , ,0, )zu     is the dynamic response of 

the surface vertical displacement obtained by substituting 

 Te
ˆ (0) 0,0, 1 Σ  to Eq. (42). 

Fourier transforming Eqs. (43)–(45) with respect 
to time and space and substituting Eq. (47) into trans- 
formed Eq. (45), the stiffness matrix of the track system 
was derived as follows: 
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              （50） 

where P̂  is the axle load of the train in the transforma- 
tion domain. 

Based on Eq.(49), the value of the dynamic response 
of the track system in the transformation domain could 
be obtained, and the final dynamic response could be 
achieved by conducting inverse Fourier transform: 
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where au  is the dynamic response under arbitrary loads 

 N
i

=1
e iξa

i
i

P  in the transform domain. 

2.4 Verification for solution 
In order to verify the solution in this paper, the 

calculation results of the model were compared with 
the result of Ba et al.[26]. Ba et al.[26] investigated the 
dynamic response of the coupled system consisting of 
the TI elastic layered ground and the track. In this paper, 
time history curve of ground displacement (Fig. 2) 
under the single axle load was obtained by using the 
same parameters with Ba et al. [26], and in calculation, 
v  1.8 *c , h v/E E  2， and /x B  0 m (v is the 
load velocity and *c  is the reference velocity, and the 
definitions of them could be found in Ba et al.[26]). 
According to Fig.2, the calculation result using the 
method proposed in this paper is consistent with that 
of Ba et al.[26], and the solution was verified. 
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Fig. 2  Solution verification 

3  Dynamic response of track–TI ground 
under the single axle load 

In this section, the dynamic response of the system 
will be discused, and the influences of the existence of 
groundwater and the stiffness of the underlying TI 
elastic half-space on the dynamic response are analyzed. 
Unless otherwise specified, 1N  1, 2N  1 and 3N   
0 in the model in Fig. 1 are selected for example analysis. 

The parameters of the track are as follows[3]: EI   
1.26×107 Pa·m2; pk   3.5×108 Pa; bk  3.15×108 Pa, 
the corresponding damping are p  0.15 and b  1; 
the mass per unit length are rm  120 kg/m, sm  490 kg/m 
and bm  1 200 kg/m; a half width of the contact area 
between the ballast and the ground is bL  1.35 m. The 
values of parameters of the ground are in the range of 
commonly used those in the papers[1, 3, 9, 11, 23, 26], and 
these values selected are as follows: For the 1st TI 
elastic layer, e  1 800 kg/m3, e 8

h 1.44 10 PaE   , e
vE   

78 10 Pa , e 7
v 3 10 PaG   , 1h  4 m ( 1h  is the thick- 

ness of the 1st layer), e e
v vh   0.33 . For the 2nd TI 

poroelastic layer, f  1 000 kg/m3， s  2 650 kg/ m3，
n  0.388， hE  4.5107 Pa， vE  2.5107 Pa， vG   
9.4106 Pa， h vhv v  0.33， 1a  3a  1.789， sK   
3.651010 Pa， fK  2.25109 Pa， 3

f 10  Pa·s， 1k   

3k  1110 m2， 2h  8 m. For TI half-space, e      
2 100 kg/m3， e

hE  2.7 910 Pa， e
vE  1.5 910 Pa， e

vG   
6 810 Pa， e e

v vh 0.25   . 
Various media were utilized to simulate the soil 

layers with various water content conditions in the 
model in this paper. In TI poroelastic layer, the ground- 
water table was considered. In order to analyze the 
influence of groundwater on the dynamic response, the 
dynamic amplification factor of the track model system 
in this paper was compared with that of the equivalent 
layered TI elastic ground–track coupled model, as shown 
in Fig. 3. In the equivalent layered TI elastic ground 
model, the TI poroelastic layer in the model proposed 
in this paper was replaced as the the equivalent layered 
TI elastic layer, and the density of the elastic layer is 

e
f s(1 )n n     , in which the elastic parameters 

are the same as those of the model in this paper. In 
Fig.3, 0/mP P  is the amplification factor. 0P  is the 
amplitude of the load on the rail; mP ( m  rs , s, b) is 
the amplitude of the integral of mF in the x direction, 
and its definition is as follows: 

   
(a) rs 0/P P - 0f  curves 

 

 
(b) s 0/P P - 0f  curves 

 

 
(c) b 0/P P - 0f  curves 

Fig. 3  Influences of groundwater existence on force 
amplification factor of track system 

 

   0 0
ˆ,2π d 0,2πm m mP F x f x F ξ f


         （52） 

where 0f  is the load frequency; =rsm , s, b mean mP  
represent the coefficients of rail–sleeper, sleeper–allast 
and ballast–ground, respectively. 

The amplification coefficients of the force between 
rails and sleepers are shown in Fig. 3(a). The results 
based on two models are approximately consistent with 
each other, and the difference is at the peak of curves. 
This could be attributed to the same parameters of two 
models and the small influence of groundwater because 
of the large distance between the contact area of rail– 
sleeper and the ground. When 0f  100 Hz, rs 0/P P   
1. The value of rs 0/P P  reaches the peak value of 
approximately 5, at 0f  289 Hz, which is the resonance 
frequency and is close to the natural frequency of the 
ideal rail–spring system, rf  p r/ / (2π)k m  272 Hz. 
Figures 3(b) and 3(c) are the amplification coefficients 
of the force of sleeper–ballast and the ballast–ground, 
respectively. The influence of groundwater increases 
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with decreasing the distance between the monitoring 
locations and the ground, and the influence on b 0/P P  
is the most. The influence of groundwater is obvious 
in the range of low frequency 0f  200 Hz, while in 
the range of relative high frequency, the curves acc- 
ording to two models are consistent. This could be 
attributed to the drainage conditions. In the low frequency 
range, the water of the TI poroelastic layer in the model 
of this paper could be fully drained, and there is a larger 
relative displacement between the solid and the liquid. 
However, in the equivalent model, the relative displace- 
ment cannot occur. And this difference leads to the 
different results. In the high frequency range, there is a 
smaller relative displacement between the solid and the 
liquid due to no time to drain the pore water. Thus, the 
TI poroelastic layer is similar to an undrained layer, 
and its property is close to the equivalent TI elastic 
layer and the curves of the two models are almost con- 
sistent with each other. For the track–ground system in 
this paper, the maximum values of s 0/P P  and b 0/P P  
are 2.3 and 1.7, respectively. 

The influence of the stiffness of the half-space of TI 
elastic medium on the dynamic response of the system 
is shown in Fig. 4, and the model proposed by this paper 
is also compared with the model considering the overlying 
TI elastic layer and poroelastic layer and the underlying 
rigid layer in this figure. The surface displacement 
distributions in the x direction at y  30 m in three 
different vertical elastic modulus cases, such as e

vE   
81.5 10 Pa , e 9

v 1.5 10 PaE    and rigid layer, are 
shown in Fig. 4. In these three cases, the parameters of 
1st layer and 2nd layer are the same, and the velocity 
of load is 0.8 0v . Without special instructions, hereafter 
the definition of reference velocity is 0 0 0/v G    
129 m / s , and 0G  and 0  are the shear modulus 
and the density of 1st layer, respectively. As we can 
see, in the case of e 8

v 1.5 10 PaE   , the surface 
vibration is stronger than that in the case of e

vE   
1.5 910  Pa. And the results of e

vE  1.5 910 Pa are 
close to those of the rigid layer model. For quan- 
tification of the difference of the dynamic response in 
the different stiffness cases of half-space, the definition 
of the relative value uzR  of difference is as follows: 

 
|2 |1

u

|1

| ( ) ( ) |

max | ( ) |
z z

z

z

u x u x
R

u x


                      （53） 

where |2zu  is the displacement of the half-space with 
e 8
v 1.5 10 PaE    or the rigid layer; |1zu  is the displace- 

ment response of the the half-space with e
v 1.5E    

910 Pa , and this value was selected as the reference 
value. As we can see, the maximum difference between 
the displacement response of the half-space of e

vE   
81.5 10 Pa  and the reference value is 78.0 %, and 

for the rigid layer, this maximum difference is 6.3%. 
Thus, the stiffness of the half-space has a relatively 
large influence on the surface displacement. Compared 
with the model of the rigid layer, the model in this 
paper could simulate the layer with various stiffness, 
and could consider the stress distribution in the half- 
space. 

 
Fig. 4  Influences of stiffness of underlying half-space  

on displacement 

4  Dynamic response of track–round under 
multi axial loads 

This section studies the dynamic response of the 
track–TI ground under multi axial loads with different 
transversely isotropic conditions. Based on the previous 
studies[23], the transverse isotropy of the ground is 
mainly characterized by the ratio of horizontal and 
vertical elastic modulii ( h v/E E ). 

The amplitude of axle loads and the coordinates at 
t  0 s are listed in Table 1[31]. 
 
Table 1  Parameters of axle loads 

No. 
ai  
/m 

Pi  
/kN 

No. 
ai  
/m 

Pi  
/kN 

1 –58.785 181.5 11 0.000 122.5 
2 –55.885 181.5 12 2.900 122.5 
3 –49.285 180.0 13 6.700 122.5 
4 –46.385 180.0 14 9.600 122.5 
5 –42.100 122.5 15 24.400 122.5 
6 –39.200 122.5 16 27.300 122.5 
7 –24.400 122.5 17 29.585 122.5 
8 –21.500 122.5 18 32.485 122.5 
9 –17.700 122.5 19 44.085 122.5 
10 –14.800 122.5 20 46.985 122.5 

 
Considering the value of h /E vE  of three different 

TI grounds, Eh of each layer of these three conditions  

are:(i) e
h|1E  81.44 10 Pa , 7

h|2 4.5 10 PaE   , e
h|3E   

2.7 109 Pa; (ii) e 7
h|1 8 10 PaE   , h|2 2.5E   710 Pa , 

e
h|3 1.5E  109 Pa; (iii) e

h|1 4.4E   107 Pa, h|2 1.375E    

107 Pa, e 8
h|3 8.25 10 PaE   . 1, 2 and 3 in the subscript  

represent the number of layers, and 1, 2 and 3 represent 
1st layer, 2nd layer and the underlyinghalf-space, res- 
pectively. In (i)–(iii), the values  of vE  and other 
parameters in each layer are the same as those in section 3. 
The three cases, (i)–(iii), represent h v( / )iE E <1, 

h v( / )iE E =1 and h v( / )iE E >1, respectively; i=1，2，
3 are the number of layers, and h v( / )iE E <1 means 
the values of h v/E E  are all smaller than 1 in the three 
layers of the ground. 

Figure 5 shows the variation of the maximum rail 
displacement with the dimensionless velocity under 
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different transversely isotropic conditions. It can be 
found that there is a peak value in the rail displace- 
ment curve, and the velocity corresponding to the peak 
value is the critical velocity of the dynamic response. 
The critical velocity phenomenon is the resonance 
phenomenon caused by the load velocity reaching the 
surface wave phase velocity of the track–ground system. 
With the increase of h v( / )iE E , the amplitude of dynamic 
response decreases gradually, and the corresponding 
critical velocity increases from 0.65 0v  to 0.7 0v  and 
0.81 0v . 

 

 
Fig. 5  Variations of the maximum displacement  

of rail with load speed 
 
The relationship between the maximum vertical 

displacement and the load velocity at y  20 m on the 
surface is plotted in Fig. 6 under different transversely 
isotropic conditions. By comparing with Fig. 5, it can 
be found that the critical velocity of vertical dis- 
placement at y  20 m is consistent with that of the 
rail, and the variation of response amplitude with 

h v( / )iE E  is the same. However, when the load speed 
is less than a certain value (0.52 0v , 0.58 0v , 0.66 0v ), 
the displacement amplitude is almost zero, and then 
the dynamic response continues to rise. This speed is 
called cut-off speed[32]. When the load velocity is less 
than the cut-off speed, the surface response is quasi- 
static, and there is no wave propagation in the ground. 

 

 
Fig. 6  Variations of the maximum displacement of ground 

surface at y=20 m with load speed 

 
Figure 7 shows the attenuation of surface displace- 

ment with the distance from the track center under dif- 
ferent transversely isotropic conditions. The displacement 
amplitude is represented by the dimensionless quantity 
VUL, and the unit is dB. VUL 20lg( /zu re )u , and 

12
re 10u   m. The rate of displacement attenuation is 

the slowest when h v( / )iE E <1, and the attenuation of 
dynamic response is the fastest when h v( / )iE E >1. 
And it can be seen that when h v( / )iE E <1, the VUL 
curve fluctuates with the distance y, and there is a pheno- 
menon of amplification region (the VUL increases 
locally). This phenomenon could be attributed to the 
superposition of surface Rayleigh wave and the inter- 
layer interface reflection wave. However, when h( /E  

v )iE >1, the curve has no obvious fluctuation, which 
may be due to the change of soil layer property, resulting 
in the decrease of reflectivity of wave at the interface 
between layers, thereby no obvious superposition of 
waves on the surface. 

 

 
Fig. 7  Variations of VUL with y 

 
The displacement response spectrum every 10 m at 

y  0–60 m is shown in Fig. 8. The broken line 1 connects 
the spectrum peaks of each region, the broken line 3 
connects the upper limit value of each region, and the 
broken line 2 is the spectrum at different locations. 

 

 
(a) h v( / ) 1iE E   

 

 
(b) h v( / ) 1iE E   

Fig. 8  Fourier spectrum of surface displacement  
at different locations 
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The attenuation of amplitude and distribution 
width are obvious in the range of y  0–10 m. In the 
range of 20–60 m, the attenuation is slow, and in the 
range of y  30 m, the frequency spectrum only 
includes the part smaller than 20 Hz for both the two 
values of h v( / )iE E . As we can see from the com- 
parison of Figs. 8(a) and 8(b), at y  0 m, both the 
displacement amplitudes of the two transversely isotropic 
conditions are in the range of 0–94 Hz, and mainly 
concentrated in 0–50 Hz. At y  10 m, the correspond- 
ing displacement amplitudes of h v( / )iE E <1 and 

h v( / )iE E >1 are attenuated to the ranges of 0–40 Hz 
and 0–18 Hz, respectively. With the increase of y, the 
spectrum distribution range of h v( / )iE E >1 are smaller 
than that of h v( / )iE E <1. 

The minimum value distributions of vertical stress 

minzz , at x  0 m, y  0 m (the maximum amplitude 
and negative compression stress) under different tra- 
nsversely isotropic conditions are depicted in Fig.9. 
The dashed lines in the figure are the interfaces between 
layers. The peaks minzz  occur in the range of 0.0–1.0 m 
away from the surface, and they would decrease with 
the increase of h v( / )iE E . The peak positions are 
0.60, 0.36 and 0.28 m for h v( / )iE E <1, h v( / )iE E =1 
and h v( / )iE E > 1, respectively. In 1st layer (TI elastic 
layer), minzz  is the smallest when h v( / )iE E >1, 
while in 2nd layer as well as the half-space, minzz  
is the largest when h v( / )iE E >1. This phenomenon 
could be explained by combining with the local 
increase of the displacement response (see Fig.7). When 

h v( / )iE E <1, the reflected wave energy of the interface 
between the 1st layer and the 2nd layer is large, and 
the vibration is mainly concentrated in the 1st layer. 
However, when h v( / )iE E > 1, the reflection wave 
energy of the interface between 1st layer and 2nd layer 
is smaller, and the transmission wave energy entering 
2nd layer and the half-space is larger, so the stress 
amplitude is larger in 2nd layer and the half-space. 
Moreover, it can be found that there is still stress 
distribution in the TI elastichalf-space, and this situation 
can further indicate that the analysis of the complete 
rigid base model in Fig.4 will lead to errors. 

 

 
Fig. 9  Distribution of zz|min with depth at x=0 m，y=0 m 

 
Under the different transversely isotropic conditions, 

the variation of minzz  with the velocity of load at z = 
1, 10, 14m is presented in Fig. 10. There are velocity 
peaks, and their values are higher than the critical vel- 

ocities in Figs. 5 and 6. At different depths, the peak 
velocity is increasing with increasing h v( / )iE E , and 
the variation rule is consistent with the rule of surface 
displacement critical velocity with h v( / )iE E . However, 
at z  10 m and 14 m, the peaks of minzz  are increase- 
ing with increasing h v( / )iE E , and the trends are opposite 
with that of displacement Figs. 5 and 6. 

 

 
Fig. 10  Variations of zz|min with load speed at     

different depths 

 
Under different transversely isotropic conditions, 

the excess pore pressure distributions in TI poroelastic 
layers are illustrated in Fig. 11. The phenomenon of 
"Mach cone" exists when the positive pore pressure is 
generated under the axial load and its distribution is 
inclined along with the depth. The excess pore pressure 
with h v( / ) 1iE E   is larger than that with h( /E  

v )iE  1. And when h v( / ) 1iE E  , excess pore pressure 
is mainly concentrated on the upper interface of TI 
poroelastic layer, while when h v( / ) 1iE E  , the dis- 
tribution of excess pore pressure is more uniform along 
with the depth. 

 

 
Fig. 11  Distribution of excess pore water pressure 
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5  Conclusion 

To study the environmental vibration caused by 
train operation, an analytical model of coupled ground– 
track considering the alternating distribution of elastic 
and poroelastic TI layers is established. Compared with 
the existing track–elastic medium foundation model, 
the proposed model simulates TI soil layers with dif- 
ferent water content conditions in the ground, taking 
into account the influences of groundwater level and 
underlying ground. To investigate the dynamic response 
of track–ground coupled system, the governing equations 
of TI medium are solved based on Fourier transform 
and potential function method; then, the exact stiffness 
matrix method is adapted to derive the solution of multi- 
layer foundation with different TI media; after that, the 
analytical solution of the dynamic response in the trans- 
form domain is obtained by coupling the track and 
ground; finally, the inverse transform is used to gain 
the dynamic response in time and space domain, and 
the influences of the existence of groundwater, the 
stiffness of underlying layer and transverse isotropy 
on the vibration propagation law are analyzed.  

(1) The influence of groundwater in TI poroelastic 
layer on the load amplification factor of the track system 
is obvious when the load frequency is lower than 200 Hz. 
The maximum amplification factors of the forces of 
rail–sleeper, sleeper–ballast and ballast– round are 5.0, 
2.3 and 1.7, respectively. Compared with the rigid base 
model, the TI half-space in this model can simulate the 
base with arbitrary stiffness and the wave propagation 
in the base. 

(2) The attenuation speed of the surface vibration 
along with the direction perpendicular to the track inc- 
reases with the increase of the transversely isotropic 
parameters h v( / )iE E , and there is a phenomenon of 
amplification under condition of h v( / )iE E <1, which 
is generated by the superposition of the interlayer 
reflection wave and the surface Rayleigh wave. The 
spectrum of surface displacement decays to 20 Hz 
when the distance larger than 30 m 

(3) The maximum vertical stress is in the range of 
1.0 m away from the surface, and the location of this 
value is decreasing with increasing h v( / )iE E . In the 
1st layer, the amplitude of vertical stress is the maximum 
when h v( / ) 1iE E  , whilst in the 2nd layer and the 
half-space, the amplitude of vertical stress is the 
maximum when h v( / ) 1iE E  . This could be att- 
ributed to that the energy ratio of the reflected wave and 
the transmitted wave is changed by the change of the 

h v( / )iE E . 
(4) The critical velocity and amplitude of the vertical 

displacement of the track and the ground surface increase 
and decrease with the increase of the transversely iso- 
tropic coefficient, respectively. The critical velocity 
and amplitude of the vertical stress in the 2nd layer 
and the half-space are positively correlated with h( /E  

v )iE . When h v( / )iE E  1, the excess pore pressure is 
concentrated near the upper boundary, while when 

h v( / ) 1iE E  , the excess pore pressure is mainly 

distributed in the whole TI poroelastic layer depth. 
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