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Abstract: In this paper, based on the axisymmetric consolidation theory of unsaturated soil and equal-strain assumption, an analytical 

solution using the homogenization of boundary conditions and eigenfunction method is proposed to three-dimensional consolidation 

of unsaturated soil enhanced by vertical drains under instantaneous loading, in which the continuous permeable boundary conditions 

are properly introduced. Then, the proposed solution is verified by the special cases of double drainage boundary conditions. Finally, 

the solution is analyzed using examples and the results show that the proposed solution can be used to simulate the arbitrary 

distribution of permeability of the top and bottom boundary by setting reasonable interface parameters, which makes up for the 

problem that the permeability of the top and bottom boundary is between pervious and impervious condition or follows an 

asymmetric distribution. In addition, with a proper ratio of influence radius to drainage well radius and appropriate depth of vertical 

drain, the influence of vertical flows on the dissipation of excess pore pressures is small when the ratio of radial to vertical 

permeability coefficient is greater than two. Last but not the least, the above influence of excess pore pressures is more obvious with 

the enhancement of the permeability of the top and bottom boundary considering the vertical flows.  

Keywords: unsaturated soil; analytical solution; continuous permeable boundary; three-dimensional consolidation; vertical drain 
 

1  Introduction 

In the design and construction of highway and rail- 
way subgrades, methods such as surcharge preloading 
and surcharge preloading with vertical drains are usually 
used for ground treatment. The settlement of the treated 
ground is generally predicted using the traditional 
saturated soil consolidation theory. However, in the 
project, compacted soil, subgrade filling, shallow replace- 
ment soil and part of offshore soft soil are all unsaturated 
soils [1]. A large number of studies have shown that under 
the current requirements in the subgrade design code, 
the degree of saturation of some subgrade fillings is 
still between 65% and 87% after compaction[2], with 
their consolidation characteristics being significantly 
different from saturated soils. There is a deviation 
between the calculated value based on the consolida- 
tion theory of saturated soil and the measured value of 
the project[3]. Therefore, it is necessary to carry out 
further research on the consolidation characteristics of 
unsaturated soil ground with vertical drains. In the existing 
consolidation theory, the boundary of the soil layer is 
usually assumed to be completely impermeable or com- 
pletely permeable. However, in engineering practice, 
the top and bottom boundaries of the ground are mostly 
semi-permeable boundaries. Therefore, the analytical 
solution to consolidation obtained under conventional 
boundary conditions has certain limitations. 

In terms of the consolidation of saturated soil ground, 
based on Terzaghi’s[4] saturated soil consolidation theory, 
Xie[5] analyzed soil consolidation under semi-permeable 

boundary conditions. However, the significance of semi- 
permeable boundary conditions is not clear. The drainage 
capacity cannot be expressed quantitatively either. There- 
fore, Mei et al. [6] proposed a continuous drainage boundary 
on the basis of Terzaghi’s one-dimensional consolidation 
theory, and proved that this boundary assumption not 
only accords with the change of boundary permeability 
in engineering with time, but it is also relatively easier 
to obtain analytical solutions compared to the case using 
semi-permeable boundary assumption. Based on the 
above continuous drainage boundary conditions, Cai et 
al.[7] obtained a numerical solution for one-dimensional 
consolidation of saturated soil layered foundations using 
finite element analysis. In addition, the theory of con- 
solidation under the continuous permeability boundary 
has also been extended in unsaturated soils [8–9]. 

Regarding the consolidation of unsaturated soil ground 
with vertical drains, based on the theory of unsaturated 
soil consolidation proposed by Fredlund et al.[10], Qin 
et al. [11] used Laplace transform and Bessel function to 
obtain the semi-analytical solution for radial consolida- 
tion of unsaturated soil ground with vertical drains under 
free-strain assumption. Zhou et al.[12] ultilized the dif- 
ferential quadrature method (DQM) to obtain a numerical 
solution for the axisymmetric consolidation of unsaturated 
soils. Subsequently, Ho et al.[13–14] obtained the analytical 
solution to the consolidation of unsaturated soil founda- 
tions through the separation of variables method and 
Laplace transform under the comprehensive considera- 
tion of vertical flow and radial flow, as well as the the 
analytical solution of the equal-strain consolidation for 
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unsaturated soil ground with vertical drains considering 
the effect of smearing. In addition, Zhou et al.[15] adopted 
the eigenfunction method to obtain an analytical solution 
for the consolidation of unsaturated soil ground with 
vertical drains considering the effect of well resistance 
based on the axisymmetric consolidation theory. However, 
in the above studies on the consolidation of unsaturated 
soil ground with vertical drains, the boundary is regarded 
as the first type of boundary or the second type of boun- 
dary conditions. The effect of asymmetric boundary, 
semi-permeable boundary or more complicated boundary 
conditions on the consolidation are not considered for 
unsaturated soil ground with vertical drains.  

Based on the continuous drainage boundary con- 
ditions proposed by Mei et al.[6], the top and bottom 
interfaces of the unsaturated soil ground with vertical 
drain are assumed to be continuous permeable boundaries, 
and an equal-strain consolidation model for the un- 
saturated soil ground with vertical drains is established. 
An analytical solution for the three-dimensional con- 
solidation of unsaturated soil ground with vertical drains 
is derived by homogenizing the boundary conditions 
and using the eigenfunction method based on continuous 
permeable boundaries. The obtained solution compre- 
hensively considers the combined flow in both the radial 
and vertical directions. Through the analysis of calcula- 
tion examples, it can be known that under the premise 
of proper ratio of influence radius to drain well radius 
and well depth, when the ratio of radial and vertical 
permeability coefficient is greater than a certain value, 
only radial flow is considered in the consolidation analysis 
process. At the same time, this general solution can be 
applied to any combination of top and bottom boundary 
conditions, which not only makes up for the lack of 
asymmetric boundary conditions in unsaturated soil 
ground with vertical drains, but also degenerates the 
analytical solution to consolidation solution of unsat- 
urated soil ground with vertical drain under complete 
permeable or complete impermeable boundary condi- 
tion. The research results will provide a theoretical basis 
for the prediction of consolidation and settlement of 
the unsaturated soil ground with vertical drains.  

2  Derivation of analytical solutions 

2.1 Basic assumptions 
(1) The air and water phases remain continuous (that 

is, the degree of saturation is between 15% and 90%). 
(2) Pore water and soil particles are incompressible. 
(3) The permeability coefficient and volume change 

coefficient of the soil are constant. 
(4) The equal-strain condition is valid, that is, the 

vertical deformation of the soil at the same depth is equal, 
and there is no lateral deformation in the ground with 
vertical drain . 

(5) The strain that occurs during consolidation is 
small strain. 

In engineering practice, the permeability coefficient 
and volume change coefficient of soil usually change 
with time[16], but under the action of small strain and 
instantaneous loading, it is assumed that these parameters 
are constant, which has little effect on the consolidation 
behavior[8–15]. At the meantime, this assumption is con- 
ducive to solving the consolidation equation of unsaturated 
soils, and is convenient to obtain the analytical solution 
of the consolidation of unsaturated soils in complex 
situations. 
2.2 Computational model 

Figure 1 shows the axisymmetric consolidation 
model of unsaturated soil ground with vertical drians. 
H is the thickness of soil layer; wr  is the radius of 
vertical drain; er is the influence radius; t is the 
consolidation time; r and z are the radial and vertical 
coordinates respectively, and the range of the affected 
area is wr   er r . This paper also assumes that the 
top and bottom boundaries of the ground with vertical 
drains are continuous permeable boundaries, and the 
top is subjected to the vertical instantaneous uniform 
loading 0q ; 0

au  and 0
wu  are the initial excess pore- 

air pressure and the initial excess pore-water pressure, 
respectively; b1 and c1 are the air interface parameters of 
the top and bottom of the unsaturated soil ground with 
vertical drains. b2 and c2 are the water interface para- 
meters of the top and bottom of the unsaturated soil 
ground with vertical drains.

 
(a) 3D schematic                         (b) 2D schematic  

Fig. 1  Three-dimensional consolidation modeling of unsaturated soil with vertical drains 
  

2.3 Governing equation 
According to the axisymmetric consolidation theory 

of unsaturated soil under the assumption of equal-strain[14–15], 
the control equations of excess pore-air pressure and 

 

Radial seepage flow

Vertical seepage flow
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excess pore-water pressure in the consolidation process 
of unsaturated soil ground with vertical drains consider- 
ing radial and vertical flows under instantaneous load 
(See Appendix A for the derivation process) can be 
expressed as follows: 
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where  a , ,u r z t and  w , ,u r z t are the excess pore- 
air pressure and pore-water pressure (kPa) in the 
affected zone, respectively; a ( , )u z t and w ( , )u z t  are 
the radial average excess pore-air pressure and average 
excess pore-water pressure (kPa) under equal- strain 
conditions, respectively; 0

au  represents the initial value 
of au , au is the absolute average excess pore-air 
pressure, au  a atmu u , and atmu  is the atmospheric 
pressure; a

1km  and w
1km  are the volume change coe- 

fficients of air and water phases under net stress (kPa–1); 
a
2m  and w

2m are the volume change coefficients of air 
and water phases under the action of matrix suction 
(kPa–1); ark ( azk ) and wrk ( wzk ) refer to the permeability 
coefficients of air and water phases in the unsaturated 
soil in the radial (vertical) direction (m/s) ; M is the 
average air molar mass (kg/mol); R is the air constant 
(8.314 J/(mol·K)); atT is the absolute temperature (K); 

r0S is the initial degree of saturation; 0n is the initial 
porosity; w  is the unit weight(kg/ m3); aC , a

vrC , a
vzC , 

wC , w
vrC  and w

vzC  are all parameters; and g is the 
gravity acceleration (m/s2). 
2.4 Initial conditions and boundary conditions 
2.4.1 Initial conditions 

   0 0
a a w w, ,0 ,  , ,0u r z u u r z u                 （7） 

2.4.2 Boundary conditions 
At wr r , there is 

   a w w w, ,  , , 0u r z t u r z t                    （8） 
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At z  0, there is 

   1 20 0
a a w w,0, e ,  ,0, eb t b tu r t u u r t u            （10） 

At z H , there is 

   1 20 0
a a w w, , e ,  , , ec t c tu r H t u u r H t u           （11） 

The values of continuous permeable boundary inter- 
face parameters b1, c1, and b2, c2 in Eqs. (10) and (11) 
refer to the analysis of related parameters of unsaturated 
soil consolidation based on continuous boundary[8–9]. 
In engineering practice, pore pressure sensors can be 
placed at the top and bottom interfaces of the unsaturated 
soil ground with vertical drain to collect data and to 
acquire the relationship between pore pressure and time. 
Finally, the specific interface parameter values can be 
obtained through inversion methods [6, 8] . 

From Eqs. (10) and (11), it can be seen that the con- 
tinuous permeable boundary can strictly satisfy the initial 
conditions of the boundary, and it can also reflect the overall 
trend that the permeability of the top and bottom inter- 
faces decrease monotonically during the consolidation 
process. When b1, c1, b2, c2→0, it can be degenerated into 
the impermeable top and impermeable bottom (ITIB) con- 
dition; when b1, c1, b2, c2→∞, it can be degenerated into 
the permeable top and permeable bottom (PTPB) condition. 
When the appropriate interface parameters are selected, 
the boundary conditions with asymmetric permeability 
can also be obtained, for instance, the permeable top and 
impermeable bottom (PTIB) condition, the semipermeable 
top and ipermeable bottom (STIB) condition , the semiper- 
meable top and semipermeable bottom (STSB) condition 
but different in permeability, etc. 
2.5 Derivation of analytical solution 

Reorganize the governing Eqs. (1) into 
2
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 （12） 

After Eqs. (12) is integrated on r and combined with 
Eqs. (8) and (9) of the boundary conditions, it is sub- 
stituted into the Eqs. (2) to obtain 
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Equations (13) are the homogeneous partial dif- 
ferential equations, and their boundary conditions Eqs. 
(10) and (11) are non-homogeneous boundary conditions. 
To solve the problem, the non-homogeneous boundary 
conditions can be homogenized, that is, let 

1 1

2 2

0 0
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At this moment, av (z, t) and wv (z, t) are inter- 
mediate variables, and their boundary and initial con- 
ditions are: av (0, t) = wv (0, t) = 0, av (H, t) = wv  (H, 
t ) = 0; av (z, 0) = wv (z, 0) = 0. 

Substituting Eqs. (15) into Eqs. (13), then  
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Expand av (z,t), wv (z,t) according to eigenfunction: 
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where J j ，( 1, 2,3, j )；  0 0j  ，  0 0j  。 
Substituting Eqs. (19) into Eqs. (16), according to 

the orthogonality of the trigonometric function sin(Jz/H) 
in the interval [0, H], and so  
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Introducing arbitrary constants 1q and 2q , consider- 
ing Eqs. (20), and so 
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Introducing the constant Q through the variable 
     1 2j jt q t q t    , from Eq. (26) , and thus  
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In addition, the condition for Eq. (27) to be valid is 

  a w w a 0Q Q                       （28） 

The roots 1Q  and 2Q of Eqs.(28) can be expressed 
as 

 2

1,2 a w a w w a

1
4

2
Q            

       （29） 

When 1Q Q , q1and q2 in Eq. (27) are q11 and q21, 
respectively. Correspondingly, when 2Q Q , q1 and 
q2 are q12 and q22 , respectively. 

In summary, Eq. (26) can be expressed as the 
following first-order linear non-homogeneous ordinary 
differential equations: 

     

     

1 1 1

2
2

2

1

2

d

d
d

d

t

t
t

t

t Q t

t Q t

 

 






  


  

                 （30） 

where 

           
       
       

1 21 j 2 12

12 a 2 a 1 q 21 q

21 w 1 w 2 12 q q

,  

,  

,  

j j j

j j

j j

t t q t t q t t

q Q t t q t

q Q t q t t

     

     

     

   
    
    

 

（31） 
The general solution of Eqs. (30) are 

1 q 1 21 q 1

2 12 q 2 q 2

q

q

    

    

  
  

                       （32） 

where 

     

         

0
1 a w 2 1 2 2 1 2

0 1 1
a 1 1 1 1 1 1

, 1 ,

    , 1 ,

j

j

C u b E Q b c E Q c

u b A E Q b c A E Q c



 

     
     

 

（33） 
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     

         

0
2 a w 2 2 2 2 2 2

0 1 1
a 1 2 1 1 2 1

, 1 ,

    , 1 ,

j

j

C u b E Q b c E Q c

u b A E Q b c A E Q c



 

     
     

 

（34） 

     

         

0
1 w a 1 1 1 1 1 1

0 1 1
w 2 1 2 2 1 2

, 1 ,

    , 1 ,

j

j

C u b E Q b c E Q c

u b W E Q b c W E Q c



 

     
     

 

（35） 

     

         

0
2 w a 1 2 1 1 2 1

0 1 1
w 2 2 2 2 2 2

, 1 ,

  , 1 ,

j

j

C u b E Q b c E Q c

u b W E Q b c W E Q c



 

     
     

 

（36） 

     1 2 1 2 1 2

e e
, = ,  , ,  , , ,

1+

t Q Dt

E Q D Q Q Q D b b c c
DQ


   

（37） 
Combining Eqs. (15), (19) and (32) results in: 

 

 

1 1

2 2

0 0
a a a

1

0 0
w w w

1

sin e e

sin e e

b t c t
j
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b t c t
j
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J H z z
u t z u u

H H H

J H z z
u t z u u

H H H






 




 



    
   





 （38） 

where 

  21 2 1

12 21 1j

q
t

q q

  



，   12 1 2

12 21 1j

q
t

q q

  



       （39） 

Equations (38) are the analytical solution to equal- 
strain consolidation of axisymmetric unsaturated soil 
ground with vertical drain under instantaneous uniform 
loading considering continuous permeable seepage bou- 
ndary conditions. 

3  Verification and example analysis 

An example is used to verify the analytical solution 
of the axisymmetric consolidation of unsaturated soils 
with vertical drains under the continuous permeable 
boundary. And the consolidation characteristics of the 
ground is also analyzed. In the example used in this 
paper, the physical parameters are consistent with those 
adopted by Qin et al. [11], and the parameters are as 
follows: 10

w 10rk  m/s, w w2r zk k , 0 80%rS , 0n 50%, 

wr  0.2 m, e r 1.8 m, H  5 m, w
1k 5m    5 110  kPa  , 

a 4 1
1k 2 10  kPa   m ， w 4 1

2 2 10  kPa   m ， a
2 1m    

4 110  kPa  , 0q  100 kPa, 0
au  20 kPa, 0

wu  40 kPa。 
3.1 Verification 

When b1, c1, b2, c2→0, the analytical solution in this 
paper can be degenerated into an analytical solution of 
equal-strain consolidation of unsaturated soil ground 
with vertical drains under the ITIB condition, and so  

   

   

0
a  1 a

1

0
w 1 w

1

1 1 sin

1 1 sin

j

j

j

j

J
u t z u

H

J
u t z u

H










       

      



 
        （40） 

where 

   21 2 1 12 1 2
 1 1

12 21 12 21

,
1 1

q q
t t

q q q q

     
 

 
           （41） 

  1 1 0 1 0
1 q a 21 q we 1t Q A u q W u                （42） 

  2 1 0 1 0
2 12 q a q we 1t Q q A u W u                （43） 

However, when b1, c1, b2, c2→∞, the analytical 
solution of equal-strain consolidation under continuous 
permeable boundary conditions in this paper is the 
analytical solution of equal-strain consolidation of 
unsaturated soil ground with vertical drain under the 
PTPB condition: 

   

   

a  2
1

w 2
1

1 1 sin

1 1 sin

j

j

j

j

J
u t z

H

J
u t z

H










      

     



 
            （44） 

where 

   21 2 1 12 1 2
 2 2

12 21 12 21

,
1 1

q q
t t

q q q q

     
 

 
           （45） 

      1
10 0 0 0

1 q a a w 21 q w a w 1 et Qu C u q C u u Q          

（46） 

      2
10 0 0 0

2 12 q a a w q w a w 2 et Qq u C u C u u Q          

（47） 
The correctness of the analytical solution in this 

paper is to verified by comparing Eqs.(44) with the 
result of Ho et al.[14] 

At z = 0.5H, the comparison curves that au  and wu  
dissipate with time under the PTPB condition is plotted 
in Fig.2, where the time factor T   s 2

wr w 1k ek t m r . 
The dissipation curves in Fig. 2(b) are clearly divided 
into two stages when a w/k k  is greater than 1, and 
there is a plateau in the middle of the two stages. This 
may be due to the fact that wu  needs an adjustment 
period to continue to dissipate due to the existence of 
suction just after the dissipation of au . Comparison 
between Figs. 2(a) and 2(b) demonstrates that when 
the excess pore-air pressure dissipates to 0, it is just 
the beginning of the plateau, which is also the diving 
point between the early and late periods of the dissipa- 
tion curve. But the plateaus are at the same position 
when different values of a w/k k are taken. This is because 
when the initial degree of saturation and other para- 
meters are the same, only changing the air permeability 
coefficient will only affect the rate of dissipation of 

au , but will not affect the degree of dissipation of wu . 
In addition, after the end of the dissipation of au , the 
onset time of the dissipation of wu and the dissipation 
rate tend to be consistent due to the same values of the 
water phase related parameters. The above phenomenon 
is almost consistent with the results of Ho et al.[14] when 
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ignoring the smearing effect, implying that the analytical 
solution in this paper is reliable. 

 

 
  (a) 0

a a/u u –T curves 

 

 
(b) 0

w w/u u –T curves 
Fig. 2  Comparison of the solution in this paper under 

PTPB condition with the result of Ho et al. [14]  
 
3.2 Example analysis 

To explore the three-dimensional consolidation cha- 
racteristics of unsaturated soil ground with vertical 
drains under continuous permeable boundary condi- 
tions, in this paper, calculation examples are used to 
compare the excess pore-air pressure and excess pore- 
water pressure with respect to radial, vertical permea- 
bility coefficient ratios (i.e. a a/r zk k and w w/r zk k ), depth 
z, and permeability of the top and bottom boundaries 
of the ground with vertical drains (i.e. different values 
of interface parameters b1, c1, b2, and c2). The focus is 
on the influence of these parameters on the law of 
pressure dissipation. 

Figure 3 shows the dissipation curves of au  and 

wu  over time at z = 0.5H, with different radial and 
vertical permeability coefficient ratios under the PTPB 
conditions. The dissipation curves are compared with 
the existing consolidation analytical solution that only 
considers radial flow. It can be seen from Fig. 3 that 
the three-dimensional consolidation that considers 
both radial and vertical flows and the axisymmetric 
consolidation that only considers the radial flow shows 
that regardless of the initial excess pore-air pressure 
dissipation or the excess pore-water pressure dissipa- 
tion, when the permeability coefficient ratio between 
radial and vertical flows  (i.e. /r zk k ) takes a value 
of 5.0, the vertical seepage has almost no effect on the 
dissipation of the excess pore pressures; when the 

/r zk k value is 2.0, the vertical flow has a slight effect 

on the dissipation of the excess pore pressures. It can 
be concluded that in the unsaturated soil ground with 
vertical drain at proper ratio of influence radius to drain 
well radius and well depth, when the ratio of radial to 
vertical permeability coefficient is greater than 2.0, the 
vertical flow has hardly any effect on the dissipation of 
excess pore pressure. Compared with the dissipation curve 
of au  in Fig. 3(a), the dissipation curve of wu  in  
Fig. 3(b) is different. The dissipation is divided into 
two stages. When w w/r zk k  ( a a/r zk k  2 remains con- 
stant) takes different values, the dissipation curves in 
the first stage (before the end of au dissipation) almost 
coincide; until the air phase dissipation is completed 
and adjusted to enter the second stage, the dissipation 
curves are different. This indicates that in the process 
of three-dimensional consolidation of unsaturated soil 
ground with vertical drains, the first and second stages 
of dissipation of wu are controlled by the dissipation of 
excess pore-air pressure and excess pore-water pressure, 
respecttively. 

 

 
(a) 0

a a/u u –T curves 

 

 
(b) 0

w w/u u –T curves 
Fig. 3  Dissipation of average excess pore-air pressure and 

pore-water pressure under different ratios of radial to 
vertical permeability coefficients 

 
The dissipation curves of the average excess pore- 

air pressure and the average excess pore-water pressure 
over time along the depth direction is plotted in Fig. 4 
in the equal-strain consolidation. The corresponding 
condition in Fig. 4 is the unsaturated soil ground with 
vertical drain under the assumption that the top boundary 
is completely permeable and the bottom boundary is 
completely impermeable (asymmetric permeable boun- 
dary of PTIB condition). Here, the interface parameters 
b1, c1, b2, c2 take the value of 102, 10–2, 10–6, 10–9 s–1, 
respectively. It can be found that the excess pore pre- 

u a
 /u
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T 
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Solution in this paper (PTPB)
Solution by Ho et al. [14]
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u a

 /u
a 0

T 
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PTPB 
z  0.5H 

a w/r zk k  10

wrk  10–10 m/s

a a w w/     /r z r zk k k k

0.5     2.0 
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2.0     2.0 
5.0     2.0 
Solution of Zhou et al. [15]

Only in the radial direction, 
without well resistance 
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Solution of Zhou et al. [15]

Only in the radial direction, 
without well resistance  
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ssures quickly dissipates to zero in the area near the 
completely permeable boundary; while in the area 
surrounding the completely impermeable boundary, the 
excess pore pressures remains the same as the initial pore 
pressure for a long period of time. By observing Fig. 4(b), 
it can be seen that during the period from 5×104 s to 
106 s, the average excess pore-water pressure dissipa- 
tion curve is close to parallel along the depth, and the 
average excess pore-water pressure value hardly changes 
during this period. This phenomenon is in line with the 
phenomenon of "plateau" in the dissipation curve when 

a w/k k  10 at z = 0.5H in Fig. 2(b). 
Figure 5 shows the distributions of the average 

excess pore-air pressure and average excess pore-water 
pressure along with the depth during the consolidation 
process when t=2×104 s and t = 2×107s, respectively 
for the unsaturated soil ground with vertical drain 
under different interface parameters of the top and 

bottom boundaries. It can be observed that the  top 
and bottom boundary of the unsaturated soil ground 
with vertical drains change from completely impermeable 
to completely permeable with the increase of the 
interface parameters’ values (i.e. b1, c1,b2, c2). Observ- 
ing the pressure distribution curves under the ass- 
umptions of ITIB, STIB and PTIB in Figs. 5(a) and 
5(b) (where ITIB: b1 = c1 = 10–6 s–1, b2 = c2 = 10–9 s–1；
PTPB: b1 = c1 = 102 s–1, b2 = c2 = 10–2 s–1；STSB: b1 = 
c1 = 2×10–5 s–1, b2 = c2 = 2×10–8 s–1；STIB: b1 = 2×10–5 
s–1, b2 = 10–8 s–1, c1 = 10–6 s–1; c2 =10–9 s–1；PTIB: b1 = 
102 s–1, b2 = 10–2 s–1, c1 = 10–6 s–1; c2 =10–9 s–1), it can 
be found that when the top boundary permeability 
assumption changes from completely impermeable to 
completely permeable, the excess pore pressure dis- 
sipation curves differ at depths less than z1; when 
converting from completely impermeable to semi- 
permeable, the difference between the two curves is  

 

      
(a) z/H– 0

a a/u u curves                                                (b) z/H– 0
w w/u u curves 

Fig. 4  Dissipation of (a) average excess pore-air pressure au and (b) pore-water pressure wu  

along the vertical direction with time  
 

        
(a) when kwr/kwz = 1.0, z/H– 0

a a/u u curves                          (b) when kwr/kwz = 1.,z/H– 0
w w/u u curves 

 

        
(c) when kwr/kwz = 5.0,z/H– 0

a a/u u curves                         (d) when kwr/kwz = 5.0, z/H– 0
w w/u u curves 

Fig. 5  Distribution of average excess pore-air pressure au  and pore-water pressure wu  along vertical direction under 
different interface parameters and the ratio of radial to vertical permeability coefficients 
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only observed when the depth is less than z2 . In Figs. 5(c) 
and 5(d), when w w/r zk k =  5 (according to the 
analysis of Fig. 3, the vertical flow can be ignored at 
this time), 1 2z z and the value is equal to 0.5H. When 

w w/r zk k is taken a different value compared to the one 
mentioned above, the comparison of excess pore 
pressure distribution shows that when the ratio of 
radial to vertical permeability coefficients is less than 
a certain value, the effect of vertical flow on the 
dissipation of excess pore pressures of unsaturated soil 
ground with vertical drain is more significant. From 
Figs. 5(a) and 5(b) where 1 2z z , it can be found that 
the larger the permeability of the top interface, the greater 
the effect of vertical flow on the dissipation of excess 
pore pressures in the depth direction. In addition, by 
comparing the pressure dissipation curves under the 
STSB and STIB conditions, it is found that only the 
average excess pore-water pressure changes when the 
top boundary interface parameter b2 is changed. 

4  Conclusion 

In this paper, an analytical solution of axisymmetric 
consolidation for unsaturated soils ground with vertical 
drains based on continuous permeable boundary under 
instantaneous loading. Through the analysis of examples, 
conclusions obtained are summarized as follows: 

(1) The analytical solution for the consolidation of 
the unsaturated soil ground with vertical drains obtained 
in this paper can be used to simulate the arbitrary dis- 
tribution of the top and bottom boundary permeabilities 
in reality by setting reasonable interface parameters, 
which makes up for the current inability to account for 
the permeability at the top and bottomboundaries 
between permeable and impermeable, and the inability 
to consider the asymmetric distribution of permeability. 
This means that the solution in this paper is continuous 
and asymmetric. 

(2) Under the premise of proper ratio of influence 
radius to drain well radius and well depth, the vertical 
flow has less influence on the dissipation of excess 
pore pressures when the ratio of radial to vertical per- 
meability coefficients is greater than 2. 

(3) When considering vertical flow, the larger the 
permeability at the top and bottom boundaries, the 
greater the influence of vertical flow on the dissipation 
of excess pore pressures. 

(4) In different unsaturated soil ground with vertical 
drains, the water permeability (or air permeability) of the 
top and bottom interface increases with the increase of 
the interface parameter value, which will only accelerate 
the dissipation of corresponding excess pore-water 
pressure (or excess pore-air pressure).  
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Appendix A 
A1 Governing equation of water phase 

For the unsaturated soil unit in the foundation of a 
three-dimensional axisymmetric shaft, the direction of 
water flowing from the foundation to the shaft in the 
radial direction is defined as the positive direction; the 
direction of water flowing vertically upward to the top 
surface is defined as the positive direction. The velocity 
of the water flowing into the unit in the radial and ver- 

tical directions are w
w dr

r

v
v r

r





 and wzv   w dzv

z
z




 

respectively. Using the net flow rate of water 
of the unit, that is, the change in water volume is equal 
to the difference in the volume of water flowing into 
and out of the unit within a certain period of time: 

w w w w w
0d d dr z r zV v v v v

r r z V
t r z r z

                      
 

（A1） 

Where Vw is the volume of water, 0 d d dV r r z  . 
Rearranging Eq. (A1), we can get 

 w 0 w wr z
V V v v

t r z

         
                （A2） 

Assuming that water seepage conforms to Darcy's 
law, namely 

w w w w
w w

w

( ) r
r r

u k u
v k

r r




 
   

 
            （A3） 

w w w w
w w

w

( ) z
z z

u k u
v k

z z




 
   

 
            （A4） 

After differentiating Eqs. (A3) and (A4) with 
respect to r and z, respectively, substituting them into 
Eq. (A2), we can get 

  2 2
w 0 w w w w w

2 2
w w

1r z
V V k u u k u

t r r r z 
    

       
   （A5） 

According to Fredlund’s unsaturated soil consolida- 
tion theory and equal-strain assumption, under loading 

0K : 

 w w
w 0 1k 0 a 2 a wd d( ) dV V m q u m u u           （A6） 

Substituting Eq.(A6) into Eq. (A5), we can obtain 
the governing equation for water phase: 

2 2
w ww a w w w

w v v2 2

1
( )r z

u u u u u
C C C

t t r r r z

    
    

    
 （A7） 

where wC , w
vrC and w

vzC  are shown in Eq. (6). 
A2 Governing equation of air phase 

The air flow of the unsaturated soil elemnt can be 
calculated by the mass flow rate of air in the radial and 
vertical directions arJ  and azJ , respectively. The net 
mass of the air flow of the elemnt is equal to the 
difference in mass between the air flowing into and 
out of the soil in a period of time: 

a a a a a
0d dr z r zM J J J J

r r V
t r z r z

                      
 

（A8） 
where aM  is the mass of the air in the soil, and 

a a aM V  ; aV  and a  are the volume and density 
of the air, respectively. 

Rearranging Eq. (A8) gives 

 a 0 a ar z
M V J J

t r z

         
                （A9） 

Assuming that the air flow in unsaturated soil 
conforms to Fick’s law: 

• a a a
a a

r
r r

u k u
J D

r g r

 
   

 
                 （A10） 

• a a a
a a

z
z z

u k u
J D

z g z

 
   

 
                 （A11） 

where •
arD  and •

azD  are the corrected radial and 
vertical air flow conductivity constants in the soil. 

Taking derivatives of Eqs. (A10) and (A11) with 
respect to r and z, respectively, and then substituting 
them into Eq. (A9) leads to 

 a 0 a a

a 0

2 2
a a a a a

2 2
a a

1r z

V V V

t V t

k u u k u

g r r r g z




 

 
 

 

   
     

            （A12） 

The air is defined as an ideal air, so there is 

a
a

at

u M

RT
 

%
                             （A13） 

Substituting Eq. (A13) into Eq. (A12) yields 

9

QIN et al.: Analytical solution to consolidation of unsaturated soil by verti

Published by Rock and Soil Mechanics, 2021



  1354                   QIN Ai-fang et al./ Rock and Soil Mechanics, 2021, 42(5): 13451354                       

 

 a 0 a a

a 0

2 2
a a a a a

2 2
a a

1r z

V V V u

t u V t

k u u k uRT RT

M gu r r r M gu z

 
 

 

   
     

%

% %

      

（A14）

 

  
Equation (A14) is a non-linear equation, and some 

of the coefficients depend on the pressure of the air. 
However, when the excess pore-air pressure is much 
lower than the atmospheric pressure, the absolute 
pressure au%  can be approximated as a constant 0

au% . 
Based on Boyle’s Law, we have 

0
a a
0

a a

V u

V u

%

%
                               （A15） 

 

where 0
aV  is the initial air volume before consolida- 

tion. 
From Eq. (A15), we can get 

 
 a atm

r0 020
a 0 a

1
V u

S n
u V u

 
% %

                   （A16） 

In the same way, by taking the derivative of Eq. (A6) 
with respect to t, and combining with Eqs. (A14) and 
(A16), the governing equation of the air phase can be 
obtained as follows: 

2 2
a aa w a a a

a v v2 2

1
( )r z

u u u u u
C C C

t t r r r z

    
    

    
  （A17） 

Equations for calculating aC , a
vrC  and a

vzC  are 
the same as Eqs. (3) to (5).
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