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Abstract: The consolidation of unsaturated soil is of great significance to road engineering, soft foundation soil improvement, etc. 

Based on the one-dimensional consolidation theory of unsaturated soil proposed by Fredlund and Hasan, the governing equations for 

pore water pressure and pore air pressure in the soil are established. The initial conditions and a type of time-dependent mixed 

nonhomogeneous boundary conditions of single-layer unsaturated soil are presented which constitutes the solution of 1D 

consolidation of unsaturated soil. The homogenization of nonhomogeneous boundary conditions and the eigenfunction expansion 

method are adopted to derive exact analytical solutions in time domain for the dissipation of pore water pressure and pore air pressure 

in the soil. Finally, the method proposed in this paper is validated by comparison with published results, and several examples are 

used to analyze the effects of exponentially changing boundary conditions on the dissipation of pore water pressure, pore air pressure, 

and deformation of unsaturated soils. The results show that the speed of exponential change of pore pressure on the boundary or flux 

across the boundary has significant effect on the consolidation process of unsaturated soil. 

Keywords: consolidation of unsaturated soil; mixed nonhomogeneous boundary conditions; analytical solutions; eigenfunction 

expansion method; exponentially changing boundary conditions 
 

1  Introduction 

Soil consolidation and settlement are very common 
in geotechnical projects, and have always been the focus 
of many engineers. Because of the wide distribution of 
unsaturated soil in practical engineering, Bishop et al.[1], 
Blight[2], Barden[3], Alonso et al.[4], Fredlund et al.[5−7], 
Yang[8], Chen[9−10] and Yin[11] have studied the deformation 
of unsaturated soil extensively. At present, the one- 
dimensional consolidation theory proposed by Fredlund 
et al.[5] which assumes the continuity of liquid phase 
and gas phase, and the three-dimensional consolidation 
theory developed by Dakshanamurthy et al.[6], which 
further extended Fredlund’s theory, are among the most 
commonly used analytical theories for consolidation of 
unsaturated soil. 

Based on the assumption that the permeability coeffi- 
cient and volume variation coefficient of unsaturated 
soil in Fredlund’s equations are constant, many researchers 
have derived the analytical solutions of consolidation of 
unsaturated soil under different homogeneous boundary 
conditions. Ho et al.[12−15] assumed that pore water and 
pore air are permeable on the top surface, or both surfaces 
of the single-layer unsaturated soil, and then the series 
solutions for one-dimensional or two-dimensional con- 
solidation of unsaturated soil is developed by adopting 

the eigenfunction expansion method. Qin et al.[16−19] 
simplified the consolidation governing equation in the 
Laplace transform domain by introducing gas and liquid 
flow rates, and analytically solved the case of unsaturated 
soil with only water/air flow or only air flow exits on 
the top surface. Wang et al.[20−21] decoupled the governing 
equations of pore water pressure and pore gas pressure 
by introducing intermediate variables, and then combined 
Laplace transform with Crump’s numerical inverse 
transformation method, they obtained the semi-analytical 
solutions for soil consolidation, and then analyzed the 
consolidation process of unsaturated soil with semi- 
permeable boundary. Zhou et al.[22] used the differential 
quadrature method to analyze the effects of complex 
initial pore water pressure and air pressure distributions 
and arbitrary homogeneous boundary conditions on 
the consolidation of unsaturated soil. Cheng et al.[23] 
achieved the analytical solution of the two-dimensional 
consolidation problem of unsaturated soil by using the 
introduced function and separation of variables. It can 
be concluded that there has been a lot of progress in 
the research of in the consolidation of unsaturated soil 
under homogeneous boundary conditions. However, the 
boundary of unsaturated soil layer is not necessarily 
completely permeable or impermeable for pore water 
and pore air in engineering projects, which means that 
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the boundary condition of soil layer may change with 
time. It's a non-homogeneous boundary. Up to now, 
researchers have given the analytical solutions of 
consolidation of unsaturated soil under several kinds 
of non-homogeneous boundary conditions. Shan et al. [24−25] 
gave the series of solution of consolidation of unsaturated 
soil under four kinds of non-homogeneous boundary 
conditions by using eigenfunction method, and analyzed 
the influence of periodic boundary on the consolidation 
of unsaturated soil. But there are almost no cyclic 
boundary conditions of pore pressures in engineering 
practice. Zhou et al.[26], Wang et al.[27] and Huang et al.[28] 
all give the consolidation solutions of the dissipation 
of pore pressure in the soil when the pore water pressure 
and pore gas pressure on the upper and lower boundaries 
of the unsaturated soil increase exponentially over time. 

A number of references[26−28] pointed out that the 
exponential boundary condition can better reflect the 
continuous change of the boundary of unsaturated soil 
from permeable and breathable conditions to impermeable 
and non-breathable conditions, but there is a deflect that 
it can’t precisely express the change of pore pressures 
at the impermeable or non-breathable boundaries[26−28]. 
The variations of pore water pressure or pore air pressure 
at the impermeable or non-breathable surface are affected 
by the consolidation process, rather than directly specified 
by the exponential functions in references[26−28], which 
may lead to inconsistency. In this paper, one type of 
mixed non-homogeneous boundary conditions and arbitrary 
initial conditions are given premised on the one-dimensional 
consolidation theory of unsaturated soil proposed by 
Fredlund et al. [5]. The pore pressure or pore pressure 
gradient on the boundary can be expressed as an 
arbitrary exponential function with respect to time. 
Compared with the boundary conditions proposed in 
references[26−28], it can better reveal the real boundary 
conditions for pore water or pore air on the impermeable 
surface. Then, by using the analytical method proposed 
by Shan et al.[25], the exact time-domain analytical 
solutions of pore water pressure and pore air pressure 
are given by homogenizationn of nonhomogeneous 
boundary conditions and the method of eigenfunction 
expansion. Finally, the analytical method is verified by 
a numerical example, and the variations of pore water 
pressure and pore air pressure in unsaturated soil as 
well as the compressive settlement of soil are analyzed 
under different exponential boundary conditions. 

2  Governing equation 

The consolidation theory of unsaturated soil proposed 
by Fredlund et al.[5] is premised on the following 
assumptions: (1) the pore air and pore water are continuous; 
(2) the soil particles and pore water are incompressible; 
(3) the dissolution of pore air in water and the 

movement of water vapor are not considered; and (4) 
the related volume change coefficient and permeability 
coefficient of unsaturated soil remain constant during 
the consolidation process. In this paper, the derived 
one-dimensional consolidation governing equation [5] 
is given directly: 

2
w a
v w w2

0
u

C u C
t tx

   
     

               （1） 
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where uw and ua are pore water pressure and pore gas 
pressure, respectively. 
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                                        （3） 
where wk  and ak  are the permeability coefficients 
of pore water and pore air, respectively; w

1m  and a
1m  

are the volume changes of pore water and pore air 
caused by the change of unit vertical net stress ( au  ) 
at 0K  condition, respectively; w

2m  and a
2m  are the 

volume changes of pore water and pore air caused by 
the change of unit matric suction ( a wu u ), respectively; 

w  is the unit weight of water; S is the degree of 
saturation; n is the porosity; ωa is the mass of air 
molecules; R is the general air constant; T is the absolute 
temperature; au  is the absolute pore air pressure, 

0
a au u  atmu , 0

au  is the initial pore air pressure, 

atmu  is the atmospheric pressure; and g is the acceleration 
of gravity. 
Equations (1) and (2) are expressed in matrix form as 

, , 0xx t Mu Cu                            （4） 

where ,( ) x  ,( ) t  represents the derivative of depth x 
and time t, respectively, and 

w
v w

w a
wv w

w
aa

0 1

,  ,  
0a

C C
u

CC C Cu
CC

   
                   

u M C    （5） 

3  Initial conditions and boundary conditions 

The model for one-dimensional consolidation of 
unsaturated soil used in this paper is shown in Fig.1. 
Any point on the surface of unsaturated soil layer is 
selected as the origin, and the direction along the depth 
is x-axis, the coordinate system is established, and all 
deformation and seepages occur along the x-axis 
direction. H is the thickness of unsaturated soil layer.  

The following arbitrary initial conditions and non- 
homogeneous boundary conditions are adopted for the 
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unsaturated soil layer: 
   w 1 a 2,0 ( ),   ,0 ( )u x g x u x g x              （6） 

   
   

w 1 a 2

w 3 a, 4

0, ( ),    0, ( ) 

, ( ),  , ( ) x

u t f t u t f t

u H t f t u H t f t

  


  
          （7） 

where 1( )g x  and 2 ( )g x  represent the distribution 
of pore water pressure and pore gas pressure along the 
depth direction at the initial moment, respectively. 

 ( ) 1,2,3,4if t i   is an arbitrarily specified function 
with regard to time, which represents the variation of 
pore water pressure and pore gas pressure on the surface 
of the unsaturated soil, pore water pressure and gradient 
of pore gas pressure on the bottom of the unsaturated 
soil over time, respectively. When ( ) 0if t  , the non- 
homogeneous boundary conditions become homogeneous, 
indicating that the surface of the unsaturated soil is 
permeable for pore water and pore air, but the bottom 
is permeable for pore water and impermeable for pore 
air. 
 

 

Fig. 1  Model for one-dimensional consolidation of 
single-layer unsaturated soil 

 

4  Derivation of the solutions 

In order to obtain the solution of one-dimensional 
consolidation of unsaturated soil under non-homogeneous 
boundary conditions, u is decomposed into the following 
two parts: 

d s u u u                                （8） 

wher su  is a function specified to satisfy the non- 

homogeneous boundary condition (7) and can be assumed 

as the following form: 

 3 1 1s

4 2

( ) ( ) / ( ) 

( ) ( )

f t f t x H f t

f t x f t

     
  

u             （9） 

By substituting the Eq. (8) into Eqs. (4), (6), and 
(7), the governing equation expressed in ud can be 
obtained as 

d d d s
, , , ,xx t xx t   Mu Cu Mu Cu                 （10） 

and the initial and boundary conditions as follows: 

     d s,0 ,0 ,0x x x u u u                  （11） 

   
   

d d
w a

d d
w a,

0, 0,  0, 0 

, 0,  , 0 x

u t u t

u H t u H t

  


  
               （12） 

Therefore, the problem of solving the homogeneous 
differential equations on u with non-homogeneous 
boundary conditions can be transformed into the problem 
of solving non-homogeneous differential equation on 
ud with homogeneous boundary conditions. 
4.1 Eigenfunctions and eigenvalues of the equation 

In order to solve the non-homogeneous Eq. (10) by 
using the eigenfunction expansion method, we first 
derive the eigenfunctions from the homogeneous form 
of Eq.(10). 

d d
, , 0xx t Mu Cu                           （13） 

By separating variables, the solution of Eq. (13) 
can be assumed to be 

  2d d e tx u Z                       （14） 

where  Td d d
w a( ) ( ), ( )x z x z xZ , ω is a non-negative 

real number. 
Substituting Eq. (14) into the boundary condition 

(12), we can obtain 
d d d d
w a w a,(0) 0,  (0) 0,  ( ) 0,  ( ) 0xz z z H z H        （15） 

By substituting Eq. (14) into Eq. (13), we can obtain 

   d 2 d
, 0xx x x MZ CZ                   （16） 

When ω=0, Eq. (16) becomes 

 d
, 0xx x MZ                             （17） 

Since the determinant of matrix M  is not 0, the 
solution of Eq. (17) is 

  01 01d
0

02 02

c d
x x

c d

   
    
   

Z                    （18） 

By substituting Eq. (18) into the boundary condition 
(15), the expressions of the unknown constants 01c , 

02c , 01d  and 02d  can be obtained to be 0.Thus 

 d
0 0x Z                                （19） 

When ω>0, the solution of Eq. (16) can be expressed 
as 

 d e xx Z F                             （20） 

where  and F are unknown constant and unknown 
second-order column vector, respectively. Substituting 
Eq.(20) into Eq.(16) yields 

 2 2 0  M C F                        （21） 

Its specific form is 

 
w 2 2 2
v w

2 w 2 2
w v w a

0
/

C C

C C C C

  

  

  
  

   
F     （22） 

If and only if the determinant of the coefficient 

x 

O 

H
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matrix of Eq. (22) is 0, F will have a non-zero solution, 
then, d ( )xZ  will have a non-zero solution, from which 
we can obtain the determinant 

4 2 0y by c                             （23） 

where 

   
   

a w a w
v v v v

a w
a w v v

/ ,  /  

1 /

y b C C C C

c C C C C

     


  
         （24） 

From Eq. (23), we can get two roots of 2y , denoted 
as A and B: 

    2/ 2,  / 2,  4A b B b b c          （25） 

Substituting the parameters of unsaturated soil 
given by Fredlund and other scholars [7, 12−25] into Eq. 
(24), we can find that they all satisfy 0c   and 0b  . 
Then substituting them into Eq. (25), we can get >0, 
A<0, B<0. In this paper, the solution is given for this 
case, so the four roots of y are 

1 1 3 1

2 2 4 2

i i ,  i

i i ,  i  

y A y

y B y

 

 
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

     
             （26） 

Rewrite the Eq. (22) into the following form 

 
w 2
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w 2
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1
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j
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C C y C C
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Substituting four roots jy  of y in Eq. (26) into Eq. 
(27), the corresponding eigenvector  T

1 2,j j jF FF  
can be obtained, respectively: 

1 1 1 2 2 2 3 3 1 4 4 2, , ,A A A A   F G F G F G F G      （28） 
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1 w
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G

G

                  （29） 

where 1A , 2A , 3A , 4A  are undetermined constants. 
Therefore, according to Eq. (20), we have the solution 
to Eq. (16): 

 
   

1 2 1 2
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1 2 3 4
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                                       （30） 

To make d ( )xZ  a real function, Ai needs to take 
conjugate complex numbers and take 

3 41 2
1 2 3 1 4 2

ii
,  ,  ,  

2 2

b bb b
A A A A A A


       （31） 

where bi (i = 1,2,3,4) is the real integral constant  to 
be determined. Substitution of Eq. (31) into Eq. (30) 
results in 

   
   

d
1 1 1 2 1

2 3 2 4 2

( ) cos sin

              cos sin

x b x b x

b x b x
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Z G
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When ω>0, substituting Eq. (32) into boundary 
condition Eq. (15) gives  
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                                       （34） 
If and only if the determinant of the coefficient 

matrix of Eq. (33) is 0, bi (i =1,2,3,4) will have a 
non-zero solution, thus, after calculating the matrix’s 
determinant, the equation satisfied by the eigenvalue 
  is obtained:  

   2 11 22
1 2

1 12 21

tan cot 1
G G

H H
G G


 


         （35） 

Eq. (35) is a transcendental equation, so  has 
infinite roots. From small to large, it is denoted ask 

(k=1,2…) successively. Each rootk corresponds to a 
set of solutions of b1k, b2k, b3k and b4k. They can be 
obtained from Eq. (33), as set below: 
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1 2 21 2

3 4 11 1
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0, sin

k k k
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b b G H

b b G H

 
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

   

 

 
           （36） 

Considering Eqs. (19), (32), (35) and (36), the 
eigenfunction corresponding to the kth eigenvalue k  
of the homogeneous Eq.(13) is expressed as  

   d
1 2 1 2 4 2( ) sin sin

1,2,
k k k k kx b x b x

k

    

                              
Z G G

 （37） 

where  Td d d
w a( ) ( ), ( )k k kx z x z xZ . 

4.2 Orthogonality of eigenfunctions 
Let p  and q  be the two different eigenvalues 

of Eq. (16), and the corresponding eigenfunctions are 
denoted as d ( )p xZ and d ( )q xZ , respectively. According 

to Eq.(16), which p , q , d ( )p xZ  and d ( )q xZ  satisfy, 

we multiply the term 
Td ( )q x  Z  and 

Td ( )p x  Z  on 

the left side of the two equations, respectively, and 
then we can get 

   
T Td d 2 d d

, 0q p xx p q px x       Z MZ Z CZ      （38） 

   
T Td d 2 d d

, 0p q xx q p qx x       Z MZ Z CZ       （39） 
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From the symmetry of matrix C , we can know 
that: 

T Td d d d( ) ( )q p p qx x      Z CZ Z CZ               （40） 

As a result, after subtracting Eq. (38) from Eq. (39) 
and integrating the subtracted equation from 0 to H 
with respect to x, we can get 

 
 

T Td d d d
, ,0

T2 2 d d

0

 d

d

H

q p xx p q xx

H

p q p q

x

x 

       

   





Z MZ Z MZ

Z CZ
      （41） 

We can simplify the integral terms on the left side 
of Eq. (41) by partial integration method. Due to the 
symmetry of matrix M , we can deduce that  

 T Td d d d
, ,0

T Td d d d
, ,

0

d d d d
w w , w w ,w

v d d d d
w w , w w ,

d d d da
a a , a a ,v w

d
a a

d

( ) ( ) ( ) ( )

(0) (0) (0) (0)

( ) ( ) ( ) ( )

(

H

q p xx p q xx

H

q p x p q x

q p x p q x

q p x p q x

q p x p q x

q

x

z H z H z H z H
C

z z z z

z H z H z H z HC C

C z

       

          

 
  
   





 Z MZ Z MZ

Z MZ Z MZ

d d d
a , a a ,0) (0) (0) (0)p x p q xz z z

 
 

  

    （42） 

By substituting the boundary conditions Eq. (15) 
into Eq. (42), it is clear that the term on the right side 
of Eq. (41) is equal to 0. Therefore, we can infer from 
Eq. (41) that: 

  T2 2 d d

0
d 0

H

p q p q x      Z CZ               （43） 

Furthermore, the orthogonality of eigenfunctions 
can be obtained from Eq. (43): 

   
Td d

0

0,   
d

,  
H

p q
p

p q
x x x

G p q

     
 Z CZ          （44） 

where pG  is a constant. Eq. (44) represents that 
Td ( )p x  Z  and d ( )q xZ  are orthogonal with respect to 

the matrix C . When 1,2,p q   , the pG  can be 

obtained by  

   2 2d d d d
w w w a w a a0

2 / d
H

p p p p pG z C z z C z C x        

                                       （45） 

4.3 Solution of the non-homogeneous equation 
According to the eigenfunction expansion method 

and the eigenfunctions obtained in Eq.(37), the non- 
homogeneous differential equation (10) on ud with 
initial conditions (11) and boundary conditions (12) 
can be solved. The solution of the differential equation 
(10) on du  has the following form:  

 d d

1

, ( ) ( )k k
k

x t x T t



 u Z                     （46） 

where ( )kT t  is an unknown function. 
Substituting Eq. (46) into Eq. (10) gives 

d d s s
, , , ,

1 1

( ) ( ) ( ) ( )k xx k k k t xx t
k k

x T t x T t
 

 
    M Z C Z Mu Cu   

                                       （47） 
The Eq. (47) can be firstly simplified by using the 

Eq. (16), which eigenfunctions should satisfy. Then  

multiply the simplified equation by 
Td ( )p x  Z  on both  

sides of the equation. Finally integrating the derived 
equation with respect to x from 0 to H, we can obtain: 

       

 

T2 d d
, 0

1

Td s s
, ,0

( )d

H

k k k t p k
k

H

p xx t

T t T t x x

x x






       

    

 



Z CZ

Z Mu Cu

   （48） 

By using the orthogonality of the eigenfunctions 
(44), Eq. (48) can be simplified into: 

     2
,k t k k kT t T t S t                     （49） 

 
T

d s s
, ,0

1
( ) ( ) d

H

k k xx t
k

S t x x
G

     Z Mu Cu      （50） 

By substituting the initial condition (11) into Eq. 
(46), we have  

       d s

1

0 ,0 ,0k k
k

x T x x



 Z u u            （51） 

By multiplying 
Td

k  Z C  on the two sides of Eq. 
(51), then integrating the equation with respect to x 
from 0 to H, and finally using the orthogonality of 
eigenfunctions (44), we can obtain:  

   
Td s

0

1
(0) ( ) ,0 ,0 d

H

k k
k

T x x x x
G

        Z C u u  （52） 

From Eq. (52), it is clear that initial distributions 
of pore pressures affect the expression of (0)kT . Thus, 
the solution to the differential equation (49) and the 
initial condition (52) is 

     2 2 2

0
e 0 e e dk k k

tt t
k k kT t T S                （53） 

Finally, the series solution of ud is obtained by 
substituting Eq. (37) and (53) into Eq. (46). And then 
adding Eq. (46) to Eq. (9) yields the solution for pore 
pressures during one-dimensional consolidation of 
unsaturated soil with non-homogeneous boundary 
condition (7) and arbitrary initial condition (6): 

   d3 1 1

14 2

( ) ( ) / ( )
( )

( ) ( ) k k
k

f t f t x H f t
x T t

f t x f t





  
  

 
u Z   

                                       （54） 

where the spatial eigenfunction d ( )k xZ  is given by 
Eq.(37), and the time function ( )kT t  is given by Eq. 
(53). 

5  Consolidation deformation of unsaturated 
soil layer 

Fredlund et al.[7] pointed out that the constitutive 
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relation of one-dimensional consolidation of soil skeleton 
under 0K  load is 

   a a ws sv
1 2

u u u
m m

t t t

    
 

  
          （55） 

where v  is the volumetric strain;   is the total 
stress; s

1m  is the change of the volume of the soil 
skeleton which caused by the change of the net unit 
vertical stress a( )u   in K0 condition; s

2m  is the 
change of the volume of the soil skeleton caused by 
the change of the unit vertical matrix suction a w( )u u ; 
and s

1m  and s
2m  are derived from the following relations 

s a w s a w
1 1 1 2 2 2,m m m m m m                   （56） 

Integrate Eq. (55) with respect to time from 0 to t, 
and then for x from 0 to H, the expression of ( )S t  for 
surface settlement of unsaturated soil can be obtained 
as follows: 

   
    
        

s
1 a0

a

s
2 a w a w0

( ) , ,

,0 ,0 d

, , ,0 ,0 d

H

H

S t m x t u x t

x u x x

m u x t u x t u x u x x





    

   

        





      

                                       （57） 

Equation (57) reflects the relationship between 
vertical net stress, matrix suction and soil settlement 
on the surface. If a constant step load is exerted on the 
top surface of unsaturated soil, the total stress   in 
all depths of the unsaturated soil remains unchanged 
during consolidation process, and the initial pore water 
pressure and pore air pressure caused by external load 
are set as 0

wu  and 0
au , respectively. In this case, Eq. 

(57) can be simplified into 

 
     

s 0 s 0 0
1 a 2 a w

s s s
2 1 a 2 w0 0

( )

, d , d
H H

S t m u H m u u H

m m u x t x m u x t x

   

    
   （58） 

The settlement of the soil layer can be achieved by 
substituting the solution (54) of pore water pressure 
and pore gas pressure into Eq.(58). If the pore water 
pressure and pore gas pressure dissipate to 0 after 
consolidation is completed, the final settlement of the 
soil is  s 0 s 0 0

0 1 a 2 a wS m u H m u u H   . 

6  Case study 

In this section, the analytical solution derived above 
is used to analyze the consolidation process of unsaturated 
soil under different exponential boundary conditions. 
In Eq. (54), the summation term of the series solutions 
takes the first 10 000 terms into account. If not specified, 
most of the examples in this paper adopt the same 
physical parameters as those listed in Qin et al.[17], that 
is 

3
w

w 4 1 w 4 1
1 2
a 4 1 a 4 1
1 2

3 8
a a w

0.50,  0.80,  10 m,  9.8 kN / m ,
0.5 10  kPa ,  2.0 10  kPa ,
2.0 10  kPa ,  1.0 10  kPa

8.314 32 J / (mol K),  293.16 K,
29 10  kg / mol,  10  m / s

n S H
m m
m m
R T

k k





   

   

 

   
     
    
  
   

，   

                                       （59） 
Qin et al. [17] pointed out in their paper that the 

pore water pressure and pore gas pressure caused by 
instantaneous load 100 kPa in unsaturated soil are the 
same along the depth direction, which are 40 kPa and 
20 kPa, respectively. This paper adopts the conclusion of 
Qin et al.[17]. That is, the initial conditions are assumed: 

   0 0
w w a a,0 40 kPa,  ,0 20 kPau x u u x u     （60） 

6.1 Verification 
In order to verify the proposed analytical method 

in this paper, the initial conditions such as Eq. (60) and 
the homogeneous boundary conditions are adopted:  

   
   

w a

w a,

0, 0,  0, 0 

, 0,  , 0 x

u t u t

u H t u H t

  


  
               （61） 

The pore water pressure and pore gas pressure in 
soil are calculated and compared by using the analytical 
solution method in this paper and the semi-analytical 
solution method proposed by Qin et al. [17]. 

The comparisons between pore water pressure and 
pore gas pressure obtained by two analytical methods, 
respectively are illustrated in Figs. 2 and 3. Obviously,  
 

 
Fig. 2  Distribution of pore water pressure along the depth 

at different times 
 

 
Fig. 3  Distribution of pore air pressure along the depth at 

different times 
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the two results are in good agreement with each other. 
And the slight difference in some points may result 
from the selection of different parameters when using 
the Crump‘s method to perform the inverse Laplace 
transform in Qin et al. [17]. Therefore, according to the 
comparison, the homogeneous boundary conditions 
calculated by the analytical method in this paper can 
be verified. 
6.2 Effects of exponential boundary conditions 

Mei et al.[29] firstly put forward the exponential 
boundary condition to analyze the consolidation of 
saturated soil, which solved the contradiction between 
homogeneous boundary condition and initial condition 
at time of “0”. Afterwards, the researchers[26−28] introduced 
it into the study of consolidation of unsaturated soil. 
By improving the rationality of exponential boundary 
conditions at the impermeable boundary in references[26−28], 
this paper assumes a representative condition, that the 
pore water pressure and pore gas pressure at the top 
surface of the unsaturated soil, the pore water pressure 
and the gradient of pore gas pressure at the bottom 
surface are all exponential functions. The effect of 
exponential non-homogeneous boundary conditions on 
the consolidation process of unsaturated soil is analyzed. 
The boundary conditions are specifically expressed as 

   
   

1 2

3 4

0 0
w w a a

0 0
w w a, a

0, e ,   0, e

, e ,  , e  

t t

t t
x

u t u u t u

u H t u u H t u

 

 

 

 

  


  
      （62） 

where 1, 2, 3 and 4 are the normal numbers (s−1) to 
be given, and their values determine the growth rate of 
the boundary exponential function. When 1, 2 and 3 

approach infinity, the pore pressure on the boundary 
quickly decreases to 0, becoming a permeable boundary. 
When 4 tends to infinity, the gradient of pore air pressure 
on the boundary rapidly decreases to zero, developing 
into an impermeable boundary, which is essentially 
different from the expressions of the impermeable 
boundary conditions proposed in references [26−28]. 

Figures 4 and 5 show the distribution of pore water 
pressure and pore gas pressure with depth at different 
times in the case of exponential boundary condition (62) 
and homogeneous boundary condition (61), respectively. 
Comparison analysis demonstrates that, when 1=2= 
3=4=102 s−1, the result of the exponential boundary 
condition equation (62) is almost the same as that of 
the homogeneous boundary condition equation (61). 
In this case, the exponential boundary condition is 
equivalent to the homogeneous boundary conditions in 
Eq. (61), and the consistency between the results from 
the two types of boundary conditions can used to 
verify analytical solutions under exponential boundary 
conditions. In this case, the consolidation process can 
be seen from the figure, due to the air-tight bottom 
surface at the initial moment, the pore water pressure 
at the top surface dissipates faster than that at the bottom 

surface. After the pore gas pressure dissipates (t>105.5s), 
the pore water pressure distributes symmetrically at 
the depth of 5 m and gradually dissipates to 0 on both 
sides. The pore gas continues to dissipate towards the 
surface, and the deeper the soil layer is, the longer 
time it takes to dissipate. At the beginning, the pore 
gas pressure at the bottom of the soil layer descends 
slightly, which can be explained that after the pore 
water on the bottom surface dissipates, the volume of 
pore air increases, leading to a reduction in the pressure. 
 

 
Fig. 4  Distribution of pore water pressure along the depth 

at different times with different boundary conditions 

 

 
Fig. 5  Distribution of pore air pressure along the depth at 

different times with different boundary conditions 

 
Figs. 6 and 7 represent the variations of pore water 

pressure and pore gas pressure over time at a depth of 
5 m with different 1, respectively. 2 =3=4=102 s−1 

means that the surface of the unsaturated soil layer is 
permeable, and the bottom surface is permeable for 
water but impermeable for air. The different values of 
1 indicate that there are various impediment degrees 
of pore water dissipation on the surface of soil layer. 
As seen in Fig. 6, the pore water pressure at the initial 
time is not affected by the value of 1, but when the time 
is longer, the value of 1 becomes smaller, consequently, 
a greater impediment degree of pore water dissipation 
occurs, incurring a slower dissipation rate of pore 
water pressure. Although the value of 1 affects the 
pore water pressure, it has almost no effect on the pore 
gas pressure. Fig. 8 shows that the settlement of the 
soil varies with time. Affected by the dissipation process 

10

8

6

4

2

0
0.0 0.2 0.4 0.6 0.8 1.0

107 s
106.5 s

106 s
105.5 s 

105 s

104.5 s

103.5 s
104 s

x 
/m

 

103 s

 Exponential boundary
 Homogeneous boundary

1=2=3=4=102/s 

uw /u0
w 

10

8

6

4

2

0
0.0 0.2 0.4 0.6 0.8 1.0

105.5 s

104.5 s 
105 s

104 s

103.5 s

103 s

 Exponential boundary 
 Homogeneous boundary 

x 
/m

 

1=2=3=4=102/s 

ua /u0
a 

7

LING et al.: Analytical solutions for 1D consolidation of unsaturated soils wi

Published by Rock and Soil Mechanics, 2021



  890                        LING Dao-sheng et al./ Rock and Soil Mechanics, 2021, 42(4): 883891 

of pore water pressure, the settlement of the soil is not 
affected by 1 at the initial time, but the smaller the 1 

at later stage, the longer it takes for the settlement to 
reach stability. 

 

 
Fig. 6  Variation of pore water pressure versus time at x= 

5 m under different values of 1 

 

 
Fig. 7  Variation of pore air pressure versus time at x=5 m 

with different values of 1 

 

 
Fig. 8  Variation of surface settlement versus time with 

different values of 1 
 

Figures. 9 and 10 display the variations of pore 
water pressure and pore gas pressure with time at a 
depth of 5 m with different 2, respectively. 1=3=4 

102 s−1 means that both sides of the unsaturated soil 
layer are permeable for water and the bottom surface 
is impermeable for air. The different values of 2 
represent the different degrees of retardation of pore gas 
dissipation on the surface of soil layer. As can be 
observed from Fig. 10, the smaller the 2, the slower 

the pore gas pressure dissipates. Meanwhile a smaller 
value of 2  will result in a slower dissipation in pore 
water pressures at the initial time, which is due to the 
coupling of the dissipation process of pore water 
pressure and pore gas pressure. Fig. 11 shows that the 
settlement of the soil varies with time. The smaller the 
2 is, the slower the growth rate of the soil settlement 
is at the initial stage, but the time to reach the 
settlement stability is almost the same. 
 

 
Fig. 9  Variation of pore water pressure versus time at  

x=5 m under different values of 2 

 

 
Fig. 10  Variations of pore air pressure versus time at 

 x=5 m under different values of 2 

 

 
Fig. 11  Variations of surface settlement versus time under 

different values of 2 
 

Figures 12 and 13 illustrates the variations of pore 
water pressure and pore gas pressure with time at the 
depth of 5 m with different 4, respectively. 1=2=3= 
102 s−1 means that both sides of the unsaturated soil 
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layer are water-permeable and the surface is air-permeable 
for air. According to the Fick law of gas, the exponential 
boundary condition of pore air pressure gradient on 
the bottom surface of Eq. (62) actually represents the 
equivalent flow rate of external gas entering the soil 
from the bottom of unsaturated soil layer. The various 
values of 4 represent the amount of gas entering the 
soil per unit time, and the entry of gas into the soil will 
cause the increase of pore gas pressure and pore water 
pressure. As can be seen from Figs. 12 and 13, the 
larger the 4, the less the gas enters the soil at the 
boundary at the beginning, the smaller the increase of 
pore gas pressure and pore water pressure, and when 
the time is longer, the flow rate of bottom gas into the 
soil decreases. Under the influence of the permeable 
boundary, the pore water pressure and pore gas 
pressure gradually dissipate to 0. From the previous 
analysis, it can be seen that at 4=102 s−1, the bottom 
surface of the soil is close to the impermeable boundary, 
and the pore water pressure and pore gas pressure will 
not increase. Fig. 14 also shows that the soil settlement 
changes with time. Due to the increase of the initial 
pore pressure, the soil expands at first, and with the 
dissipation of pore water pressure and pore air pressure, 
the soil settlement gradually decreases to a stable value. 

 

 
Fig. 12  Variation of pore water pressure versus time at  

x=5 m under different values of 4 

 

 
Fig. 13  Variation of pore air pressure versus time at  

x=5 m under different values of 4 

 
Fig. 14  Variation of surface settlement versus time under 

different values of 4 
 

7  Conclusion 

Based on the one-dimensional consolidation equation 
of unsaturated soil proposed by Fredlund et al, the 
analytical solution of one-dimensional consolidation 
of single-layer unsaturated soil under non-homogeneous 
mixed boundary conditions is given by using homo- 
genization of non-homogeneous boundary conditions 
and eigenfunction expansion method. The proposed 
method is verified according to the solution of the 
homogeneous boundary, and the non-homogeneous 
boundary conditions which vary exponentially with time, 
are given. By changing the values of 1, 2 and 4, the 
variations of pore water pressure, pore air pressure and 
soil settlement are analyzed. The calculation results 
show that the larger the  is, the closer the exponential 
boundary is to the homogeneous boundary condition, 
and the value of λ determines the change rates of pore 
water pressure, pore gas pressure or its gradient at the 
boundary, which has a great influence on the consolidation 
process of unsaturated soil. 
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