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One package of schemes for some difficult issues in finite element plasticity 
analysis 
 

ZHENG Hong,  ZHANG Tan,  WANG Qiu-sheng 
Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology), Ministry of Education, Beijing 100124, China 

 

Abstract: The Mohr-Coulomb yield criterion takes on the simplest form in the Mohr stress space, which has thus been most extensively 
applied in limit analysis and limit equilibrium methods because of its accuracy. However, the Mohr-Coulomb yield surface in the stress 
space is non-smooth, causing huge troubles to the constitutive integration in the deformation based finite element plasticity analysis. In 
addressing strength problems, meanwhile, solvers based on the load controlled method (LCM) are hard to bring the finite element 
model to the limit equilibrium state. Aiming at these issues, the solution schemes are proposed as follows. First, an algorithm named 
GSPC is designed for the constitutive integration for plasticity with non-smooth yield surfaces. GSPC is always convergent for arbitrary 
large strain increments, with far more excellent numerical properties than the return-mapping methods available. A solver based on the 
displacement controlled method (DCM) is developed fitted for the finite element plasticity analysis. The DCM solver is able to bring 
easily the finite element model into the limit equilibrium state, with no convergence issue, and far more efficient and robust than any 
LCM solvers. At the same time, a formula is derived for the computation of partial derivatives of principal stresses with respect to stress 
components. At last, combined with the strength reduction method, the secant method for the factor of safety of slopes is developed, 
and the location and depth of tension cracks at the slope top are proposed. 
Keywords: constitutive integration for plasticity; Mohr-Coulomb yield surface; displacement controlled method; slope stability; 
tension cracks 
 

1  Introduction 

Strength problems include the evaluation of bearing 
capacity of ground foundations, the computation of lateral 
earth pressure on retaining walls, and the analysis of 
stability of slopes. 

Classical methods for strength problems, such as 
the limit analysis and limit equilibrium methods, do not 
in general involve the computation of deformation. The 
Mohr-Coulomb yield criterion takes on its simplest form 
in the Mohr stress space. Meanwhile, the Mohr-
Coulomb yield criterion has been in the dominant posi-
tion of failure criteria of geomaterials because it is also 
very accurate. 

However, the Mohr-Coulomb yield surface in the 
stress space is composed of six smooth surface patches. 
Those points on a ridge between two contiguous surface 
patches are non-smooth, in other words, normal lines at 
these points are not unique, which leads to huge 
troubles to the constitutive integration for plasticity in 
the deformation based finite element analysis. No tension 
cutting-off will increase the number of yield surface 
patches from six to nine, bringing in more troubles to 
the constitutive integration for plasticity. A quite large 
number of algorithms have been developed to address 
this issue, yet none of them is proved theoretically 
convergent. In practice, strain increments have to be 
made small enough to assure convergence and accuracy. 
Section 2 will deal with this issue. 

The expression of yield surfaces in terms of principal 
stresses is usually simpler and easier visualized than the 
stress invariants and the Lode angle. In order to find out 

partial derivatives of yield functions or plastic potential 
functions with respect to stress components, however, 
partial derivatives of principal stresses with respect to 
stress components have to be computed. In the literature 
on solid mechanics, we have found no formulae available. 
We derive the relevant formulae in section 3, which are 
certainly of vital importance in the constitutive integration. 

While the deformation based finite element analysis 
is applied to strength problems, usually geomaterials are 
deemed elastic perfectly plastic. Then, ground founda-
tions or slopes are brought into the limit equilibrium 
state by increasing external loads or reducing material 
strength. At this moment, ground foundations or slopes 
in the limit equilibrium state turn actually into a mech-
anism; in other words, parts of ground foundations or 
slopes would slide along critical slip surfaces. In order 
to enhance robustness, even those very mature commercial 
software products decline the elastic perfectly plastic 
model. For example, Abaqus assigns a very small harden- 
ing modulus to the materials specified by the user to be 
elastic perfectly plastic. The Newton method for the 
system of nonlinear equilibrium equations is implemented 
by gradually increasing external loads, which is so 
called the load controlled method (LCM). Before ground 
foundations or slopes enter the limit equilibrium state, 
LCM is interrupted due to divergence. In section 4, an 
algorithm based on the displacement controlled method 
(DCM) is developed to aim at this issue. Combined 
with the strength reduction method, in section 5, the 
secant method for the factor of safety of slopes is 
developed, and the location and depth of tension cracks 
at the slope top are proposed. Section 6 illustrates 
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applications of the proposed procedures to the stability 
analysis of slopes, pointing out the drawback of 
Michalowski’s evaluation of depth of tension cracks at 
the top of slopes. Section 7 concludes with the prospects 
for the coming investigations. 

2  Constitutive integration for plasticity with 
non-smooth yield surfaces 

Figure 1(a) demonstrates the Mohr-Coulomb yield 
surface in the principal stress space of 1  - 2  - 3  , 
which is composed of six planes. The intersection of the 
Mohr-Coulomb yield surface with the -plane 

1 2 3     constance 

is an irregular hexagon. Those points on a ridge between 
two contiguous planes are not smooth, i.e., normal lines 
at these points are not unique. As a result, there are huge 
difficulties in the constitutive integration for plasticity 
to either implicit algorithms[1] or explicit algorithms[2]. 
According to the associated flow rule, the plastic strain 
rate direction at a point on the yield surface is the 
outward normal line at the point. No tension cutting-off 
would result in the yield surface encompassed by nine 
yield surface patches, as shown in Fig. 1(b), which 
would further burden the constitutive integration. 

 

      
(a) M-C yielding surface         (b) Cut-off M-C yielding surface 

Fig. 1  Mohr-Coulomb yielding surfaces 
 

Procedures for the constitutive integration with 
non-smooth yield surfaces can be roughly classified 
two categories. The first category is to smooth the non-
smooth yield surface, and the second is to directly work 
with the non-smooth surface. 

The Drucker-Prager yield surface is the simplest but 
coarsest smoothing approximation to the Mohr-
Coulomb yield surface. By saying it is the simplest 
approximation to the Mohr-Coulomb yield surface, we 
mean the Drucker-Prager yield surface has the simplest 
and smoothest function expression. The intersection of 
the yield surface with the  plane is a circle. By saying 
it is the coarsest approximation to the Mohr-Coulomb 
yield surface, we mean the geomaterial followed by the 
Drucker-Prager yield criterion would have an equal 
tension strength and compression strength. The appro-
ximation of the Mohr-Coulomb yield surface by the 
Drucker-Prager yield surface is not unique. For example, 
we can specify the Drucker yield surface coincide with 
the major ridge or the minor ridge of the Mohr-Coulomb 
yield surface. It is more feasible to let the Drucker-

Prager circle and the Mohr-Coulomb hexagon have an 
equal area[3]. The Drucker-Prager yield surface results, 
as it were, from global approximation to the Mohr-
Coulomb yield surface. 

In order to avert coarse errors created by the Drucker- 
Prager yield surface, since Zienkiewicz & Pande[4] and 
Menetrey & Willam[5], smoothing the Mohr-Coulomb 
yield surface has never halted[6–7], and the operations 
are locally smoothing. It is required that the smoothed 
yield surface be approximate sufficiently to the Mohr-
Coulomb yield surface, convex and second order smooth. 
These requirements conflict to each other, as a result, it 
is not a trifle to have a satisfactory and locally smoothed 
Mohr-Coulomb yield surface. Smoothing incurs errors 
without exception, and compromises efficiency because 
the strain increment has to be small enough to assure 
convergence whenever the stress point is on the part of 
the yield surface with larger curvature. 

The second category to cope with a non-smooth yield 
surface is to work directly with it. The simplest procedure 
is proposed by Owen et al.[8], in which the normal line 
at a point on a ridge of the Mohr-Coulomb yield surface 
is specified as the average of the two normal lines of the 
relevant surface patches. Such a practice only fits the 
explicit scheme because the divergence issue comes 
due to a discontinuous change of the normal line in the 
implicit scheme. 

The return-mapping algorithms can be reduced to 
the solution of a system of non-smooth equations. The 
active yield surface patches are determined in iteration 
by a test-and-error process, and their convergence cannot 
be theoretically guaranteed. In practice, strain increments 
have to be small enough to reach convergence. 

Reviews of the literature on constitutive integration 
for plasticity with non-smooth yield surfaces can be 
referred to[9] and monographs such as[10] and [11]. 

In this section, we reduce the constitutive integration 
for plasticity to a nonlinear complementarity problem 
and design the algorithm of GSPC. The convergence of 
GSPC can be theoretically guaranteed. 
2.1 Perfectly elastic plastic constitutive relationship 
in the rate form 

For an elastic plastic material, the stress rate vector 
σ  and the strain rate vector ε  are related by 

 p   D                               （1） 

Here, D  is the symmetric and positive definite elastic 
matrix of 66;    and   are both 6-dimensional 
vectors;   are known with six components of x , y , 

z  , yz  , zx  and xy ;   are unknown with the 
same subscripts as  , with tension being specified 
positive. The plastic strain rate vector p

  is unknown 
with the same subscripts as  , determined by the 
Koiter flow rule[12] 

p
1

m

i i
i

g


                                （2） 

where m  is the number of the yield surface patches 

2

Rock and Soil Mechanics, Vol. 42 [2021], Iss. 2, Art. 1

https://rocksoilmech.researchcommons.org/journal/vol42/iss2/1
DOI: 10.16285/j.rsm.2020.6393



  303                      ZHENG Hong et al./ Rock and Soil Mechanics, 2021, 42(2): 301314                        

 

composing the yield surface; 1 ,, m  are referred 
to as plastic multipliers that are not negative; 1g ,, 

mg  are gradients of the plastic potentials of 1g ,, 

mg respectively, which are to be explained 
subsequently. 

Except   and D, all the quantities in Eqs. (1) and 
(2) depend nonlinearly on the current stress vector   
and the plastic multiplier vector  , written as  ,   ,

 p ,     and  ,ig    . In order to sim-plify the 
equation expression, the arguments  ,    of   
and others are totally omitted. 

As for Eq.(2), more explanations are made as 
follows: 

1) m is the number of the yield surface patches 
encompassing the elastic domain E  in the 6-dimen- 
sional stress space 

  6 0≤E R  y                        （3） 

The symbol of “  ” represents “is defined as”; 
6: mR Ry  is a vector valued function that takes 6-

dimensional vector of   as it argument and has m 
smooth component functions of  1y  , , my   , 
where  iy  0 is the equation of the i-th boundary 
surface patch of E ; the yield function  iy   is 
convex. In Eq.(3),  ≤y  0 means all the m 
component functions  ≤iy   0, 1, ,i m  , sugges- 
ting that a stress point of   is only inside E  or on 
the surface of E . Since merely elastic perfectly 
plastic materials are considered in this study, E  
keeps invariant in the stress space. 

Take the intact Mohr-Coulomb criterion as an 
instance. In the principal stress space of 1  - 2  - 3  , 
E  is an irregular hexagon cone encompassed by six 
planes, as shown in Fig. 1(a). The six yield function are 
as follows: 

     
     
     
     
     
     

1 1 2 3 1 3 1 3

2 1 2 3 2 3 2 3

3 1 2 3 2 1 2 1

4 1 2 3 3 1 3 1

5 1 2 3 3 2 3 2

6 1 2 3 1 2 1 2

, , sin 2 cos
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








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（4） 
in which c is the cohesion and   the internal frictional 
angle. E  encompassed by the Mohr-Coulomb yield 
surface has six ridges and one vertex, points on which 
are not smooth. Particularly, by taking   0, the 
Mohr-Coulomb yield criterion reduces to the Tresca 
yield criterion, which fits the transient case with no 
drainage. 

If the material cannot bear tension, what we obtain 
is the cut-off Mohr-Coulomb yield surface, as shown in 
Fig. 1(b). E  in the principal stress space has another 

three planes: 

 
 
 

7 1 2 3 1

8 1 2 3 2

9 1 2 3 3

, ,

, ,

, ,

y

y

y

   

   

   




 
 

                         （5） 

In this case, the number of the surface patches 
composing the cut-off Mohr-Coulomb yield surface is 
nine, i.e., m=9, and more ridges and vertices are created. 

2) Correspondent to the i-th yield surface patch 
 iy  0 is the i-th plastic potential function  ig  . 

The Koiter flow rule defined by Eq. (2) says that p
  

can be expressed by the non-negative linear 
composition of gradients of all the m   potential 
functions,  ig  , 1, ,i m  . More explanations will 
be given shortly. 

3) If taking i ig y , the flow rule defined by Eq. 
(2) is called the associated flow rule; otherwise, the 
non-associative flow rule. By taking the Mohr-
Coulomb material as an instance, and replacing the 
internal frictional angle   by the dilatancy angle  , 
the potential function  ig    is obtained, with 0
≤ ≤  . 

4) The stress point   evolves according to Eq. (1). 
Meanwhile, at no time is   outside E ; or in other 
words,  ≤y  0. 

In Eq. (2), i   and iy   constitute a pair of 
relationship, namely, 

 0,  0,  0≥ ≥i i i iy y                    （6） 

for 1, ,i m  ; or the vector form equivalent to Eq. (6) 

 0 0≤ ≥ λ y                           （7） 

where λ   is an m-dimensional vector with m  
components of 1,  ,  m  . Here, “   ” represents 
“perpendicular to”; that is to say, “ a b ” is equivalent 
to “ T a b 0”. 

Particularly, if   y   0, namely, the stress point 
   is inside E  , then λ  0 according to the 
complementarity relationship (7), and p   0 is 
implied according to Eq.(2), suggesting    is 
dependent linearly upon  . 

Otherwise, if the stress point    is on the 
boundary of E , then two cases exist: 

1)   is on only one yield surface patch, e.g., the 
first yield function surface of  1y   0, while 

 iy  0， 2, ,i m  ; namely, the yield surface at   
is smooth. According to the complementarity relation 
(6), 1 ≥0, while i  0， 2, ,i m  . By the Koiter 
rule (2), the strain rate vector p

   is in direction of 
 1g  . 

2)   is on the ridge of the first and second patch, 
say, implying  1y   2y   0; while  iy   0, 

3, ,i m  . According to the complementarity relation 
(6), 1 ≥0 and 2 ≥0, while i  0， 3, ,i m  . By 
the Koiter rule (2), p

  must be located in the normal 
cone  V    at    corresponding to the two plastic 
potential contours 
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 1g  constant_1 and  2g  constant_2 

Here, if    V  , then there exist two non-negatives 
  and  , such that 

   1 2g g        

Especially for the associated flow rule, the Koiter 
rule defined by Eqs. (2) and (7) states that the strain rate 
vector p

  always belongs to the normal cone  V   
of E  at point  ， which is defined as follows. If 
   is inside E  ,  V   ={0}. If    is only on the 
first yield patch  1y   0, say, all the vectors in 
 V   are in direction of vector  1y  . If   is on 

the ridge between the two patches of  2y   =0 and 
 3y   =0, say, then all the vectors in  V    are the 

non-negative linear combination of the two vectors 
 2y    and  3y   . Figure 2 shows the normal 

cones of the stress points at three different positions: 

1   is inside E  ; 2   is only on the yield surface 
patch  1y   0 of E  ; and 3   is on the ridge of 
the two boundary patches  2y   0 and  3y   0 
of E . 

The substitution of Eq. (2) into Eq. (1) leads to 

e p                                    （8） 

with 

e
  D                                   （9） 

and 

p  DJλ                                （10） 

Here, J  is Jacobean of the vector valued function g : 
6 mR R  , a matrix of 6m; and g   has m   com- 

ponent functions which are the m   plastic potential 
functions of 1g , , mg ; so,  

     1 , , mg g    J                  （11） 

 

 
Fig. 2  Schematic of normal cones at different points 

To this point, Eqs. (8) and (7) (or Eq. (6)) describe 
elastic and perfectly plastic deformation in the rate form, 
which constitute the differential-algebraic equations, 
DAE for short. However, the algebraic equations here 
are in the complementarity form; as a result, we propose 
calling them the differential-complementary equations, 
with the acronym of DCE. According to our searching, 
no such a term exists in the literature. Because the 
algebraic equations in the conventional DAE are 
usually smooth, the general solutions for DAE, such as 
literature[13], are not able to be directly applied to the 
DCE just introduced. 

The numbers of the differential Eqs. (8) and the 
complementarity Eqs. (7) are 6 and m , just equaling 
the number of components of vectors   and  , i.e., 
the 6 components of the stress vector   and the m  
plastic multipliers of vector   . So, once the initial 
value 0   of    is given, in principle    and   
corresponding to the finite strain increment of   can 
be derived. 
2.2 The numerical constitutive integration 

Now suppose the time interval corresponding to the 
current load increment is  0,T . We will shortly see 
T  can be any real greater than zero, i.e., the so-called 
pseudo time length. The strain rate    and T   are 
related by 

T


                                   （12） 

The formulation of the constitutive integration is 
stated as follows. Suppose the initial value 0  of   
and the strain increment   of this load step are given, 
find out the total stress vector T . In order to limit the 
introduction of too many notations, T  is still written 
as  . 

Integration of Eq. (8) with respect to time over the 
interval of  0,T   by using the Euler backward 
integration leads to 

e pT                                 （13） 

in which e  is the elastic trial stress 

e 0   D                               （14） 

where both J   and    in p  , see Eq. (10), are 
calculated at time T . 

Considering  pT T DJ λ  , and Eq. (7) still 
holds by replacing   with T , i.e., 

 0 0≤ ≥T  λ y                          （15） 

As a result, what we can find out from Eqs. (13) and 
(15) are T   but not   . This, however, does not 
affect the value of  .  

The above deduction just reflects the following 
feature of rate-independent materials (or quasi-static 
problems): the increment stress vector    is 
independent of the magnitude of time length T, but 
dependent on the increment strain vector   . 
According to the authors’ knowledge from the literature, 
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it is the first time to prove   is independent of time 
step length T by explicitly introducing time variable t  
and its interval  0,T   and integrating rate con- 
stitutive Eqs. (1) of plasticity. 

Therefore, in order to pursue compact formulation, 
we deem T   as  , and rewrite Eq. (13) into 

e p                                  （16） 

with p   being defined by Eq.(10). Afterwards, Eq. 
(16) is termed as the decomposition of elastic-plastic 
stress, which is of vital importance in deriving the 
alternative form of the finite element system of 
nonlinear equations in section 4. 

To this point, we have obtained the system (16) of 
nonlinear equations and nonlinear complementarity 
relationship (7) for determining  ,   , which will 
constitute the mixed complementarity problem to be 
introduced in the next subsection. 
2.3 The mixed complementarity problem and the 
solution algorithm of GSPC 

To sum up, the mixed complementarity problem 
arising from the constitutive integration for plasticity 
can be stated as follows. Given the strain increment 
vector  , find  ,  6R  mR  such that 

 
 

0 , 0

, 0

≤ ≥I

E

 


 

λ f

f

 

 
                      （17） 

which is abbreviated by MiCP  ,I Ef f  . Here, mR  
represents the nonnegative orthant of nR  ; in other 
words, all the m components of any vector in mR  are 
nonnegative. :If 6 m mR R R   is defined by 

   ,I f y                           （18） 

:Ef 6 6mR R R   by 

  p e,E  f                          （19） 

Supposing the set of solutions to MiCP  ,I Ef f  is 
not empty, the following results have been obtained in 
Ref[14]:  

1) for the associated flow, the solution to MiCP
 ,I Ef f  is unique;  

2) for the non-associated flow, a sufficient condition 
to guarantee the uniqueness of solution to MiCP
 ,I Ef f  is given; and 

3) even for the non-associated flow, the solution to 
MiCP  ,I Ef f   is still unique if the cut-off Mohr-
Coulomb yield surface is applied. 

Applying the fact that MiCP  ,I Ef f  is a particular 
case of finite dimensional variational inequalities and 
using the Gauss-Seidel iteration skill, we improved the 
projection-contraction algorithm for general finite 
dimensional variational inequalities[15], and called the 
improved algorithm GSPC that owns the following 
features: 

1) GSPC is always convergent for an arbitrary large 

strain increment   ; while the return-mapping 
algorithm is not always convergent even if    is 
small enough. 

2) GSPC does not need to test if the elastic trial 
stress e   is outside the elastic domain E  ; nor to 
find the intersection of the elastic path 0  - e   with 
the yield surface; nor to guess which yield surface 
patches are active; and nor to compute the Hesse of the 
plastic potential function ig . 

And 3) GSPC is more efficient than the return-
mapping algorithm; what is more, such an advantage 
becomes more obvious for non-smooth yield surfaces. 

Since no trial-and-error process is involved, pro-
gramming GSPC is even simpler than the Gauss 
elimination method. For the sake of integrity, the 
pseudocodes of GSPC are listed in the appendix. 

If a return-mapping algorithm is applied to solve 
 ,    and if e   is outside E  , usually the 
intersection I   of the elastic path 0  - e   with the 
yield surface is needed(see Fig.3), which needs to take 
some computations. 

 

 
Fig. 3  Intersection I  of elastic path 0 -e  and the 

yielding surface 

 
Even if the yield surface is smooth, such as the 

Mises yield surface, in order for the return-mapping 
algorithm to be convergent and accurate, the strain 
increment vector   has to be small enough. 

If the return-mapping algorithm is applied to 
address non-smooth yield surfaces, the assumption of 
the active yield surfaces is needed. If the 4th and 5th 
yield surface patches are assumed active, then the 
return-mapping algorithm needs to solve the system of 
nonlinear equations in  , 4 and 5  

   
 
 

e 4 4 5 5

4

5

0

0

g g

f

f

         
 

D   





         （20） 

which is equivalent to the mixed complementarity 
problem (17) because i  0 for any i   4 or 5. 

If both 4  and 5  are nonnegative, then the 
assumption that the 4th and 5th yield surface patches 
are active is right; otherwise, other yield surface 
patches are specified active and the new iteration 
process is started[11]. 

If the Newton method is used to solve system (20), 
the Hesse matrices of 4g  and 5g  
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2
4

i j

g

 


 
     

and
2

5

i j

g

 


 
     

               （21） 

have to be calculated. Here, the subscripts of i and j 
range from 1 to 6, referring to anyone of the six 
components: x  , y  , z  , yz  , zx  , xy ; for 
example, 

2
4

2 4

g

 



 

2
4

y yz

g

 


 
 

and so on. 

Obviously, the more the patches encompassing E  
are, the more complicated the return-mapping algo-
rithm will become. Take the cut-off Mohr-Coulomb 
yield surface for an instance. At most three active yield 
surface patches might be active. What is worse, the 
return-mapping algorithm is not able to assure con-
vergence. Luckily, GSPC has totally solved these issues. 

3  Partial derivatives of principal stresses 
with respect to stress components 

For many yield surfaces, the expressions of the 
yield functions and plastic potential functions are far 
simpler and more intuitive in the 3-dimensional 
principal stress space than in the 6-dimensional stress 
space in terms of the stress invariants and the Lode 
angle. According to the Koiter flow rule(Eq.(2)) and the 
chain rule of derivation, the computation of the partial 
derivative of the plastic potential function g with 
respect to the stress component ij  necessitates the 
computation of the partial derivatives of the three 
principal stresses with respect to ij , namely, 

3

1

k

kij k ij

g g 
  

 


  
                         （22） 

where, k ，k  1, 2, 3, are the three principal stresses. 

In the literature on solid mechanics, we have found no 

formula or algorithm for computing k

ij






. Now we 

will fill the gap. 
Let the 33 matrix of the stress tensor be denoted 

by S, i.e., 

x xy xz

yx y yz

zx zy z

  
  
  

 
   
  

S                        （23） 

Since xy yx  , etc., S is symmetric. 

Further, denote by   anyone of the three 
principal stresses, and by l the relevant principal direc-
tion of  . Then, 

Sl l                                  （24） 

By differentiating the both sides of the above 
equation with respect to any stress component, we have 

      S l Sl l l                        （25） 

Here, S  represents the partial derivative of S with 
respect to the stress component; for example, in the 
computation of the partial derivative of S with respect 
to y , S  represents 

0 0 0

0 1 0

0 0 0y

 
      

  

S
S  

For another example, in the computation of the partial 
derivative of S with respect to xy , S  represents 

xy
  


S
S

0 1 0

1 0 0

0 0 0

 
 
 
  

 

and so on. 
Pre-multiplication of the both sides of Eq. (25) by 

Tl  leads to 

T T T T      l S l l Sl l l l l                   （26） 

From T l l 1 and by differentiating both its sides, 
T l l 0 is deduced. Meanwhile, TS S  and Eq. (24) 

imply 

 TT T 0    l Sl Sl l l l                    （27） 

Finally, Eq. (26) can be reduced to 

T   l S l                                 （28） 

Specifically, we have 

T 2 2 2

T

,  ,  ,

2 ,  2 ,  2

x y z
x x y z

x y y z z x
xy xy yz zx

l l l

l l l l l l

  
   

  
   

            
       
    

S
l l

S
l l

 

（29） 

with   T, ,x y zl l l  l . In short, 

 2 k kk
ij i j

ij

l l
 



 


                        （30） 

with , , 1,2,3i j k   and kl  = unit principal direction 
corresponding to the kth principal stress k . ij  is the 
Kronecker-Delta. Note that no summation is implied 
over the repeated indices i, j, or k. 

It must be noted that applying the transforms 
between components of the stress tensor in the 
framework composed of the three principal directions 
and the user defined coordinate system, Yang et al.[16] 
derived the same results as Eq. (29), which is not 
familiar to the authors until the submission of this 
manuscript. Since the derivation is quite different from 
literature [16], this section is still retained. 
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4  The displacement-controlled method 

When a ground foundation or a slope composed of 
elastic perfectly plastic materials reaches the limit 
equilibrium state, the ground foundation or the slope 
will turn into a mechanism because the critical slip 
surface runs through the model; in other words, part of 
the ground foundation or the slope will slide along the 
critical slip surface. At this moment, the tangential 
stiffness matrix will be no longer positively definite and 
have a rank deficiency of one[17], rendering the Newton 
method based on the load-controlled method (LCM) to 
fail to converge. As a matter of fact, even prior to the 
limit equilibrium state, the LCM is usually hard to 
converge. 

In order to bring the discretization model into the 
limit equilibrium state, we need to solve the system of 
equilibrium equations in FEA by the displacement-
controlled method (DCM). But big differences in the 
programming structure exist between LCM and DCM. 
As a result, the DCM is seldom applied by pro-
grammers. 

In this section, a solver will be designed especially 
for the finite element plasticity analysis. Based on the 
solver, the LCM and DCM can have structures very 
analogous to each other, and it is quite convenient to 
switch between LCM and DCM. 
4.1 Alternative form of FEA system of equilibrium 
equations 

Once the problem domain   is discretized in a set 
of finite elements, we are always able to set up the 
system of equilibrium equations 

e
T

0
e

d    B q q                       （31） 

at the end of the current load step. Here, 0q  represents 
the equivalent load vector at the beginning of the 
current load step; q  the incremental equivalent load 
vector at the end of the current load step. That means 

0q q  represents the load level at the end of the 
current load step;  represents the summation in the 
sense of assemblage; e  is a typical element in the 
mesh;   is the total stress vector at the end of the 
current load step; and B  is the 6 en matrix that 
transforms the incremental displacement degrees of 
freedom vector ep  of element e  into the 
incremental strain vector  , i.e., 

e  Bp                                （32） 

with en = dimension of vector ep . 
In the literature on FEM such as [12], the 

computations of B , q  and 0q  are expounded upon. 
However, the application of q 0q  to the set of 

finite elements at a stroke might be hard to converge. In 
practice, we usually introduce a load multiplier   
less than one, followed by solving the system of 
equilibrium equations 

e
T

0
e

d     B q q                      （33） 

which is corresponding to the load level of  q 0q . 

After the convergence is reached, the displacement 
increments, the stresses and 0q , and so on, are updated, 
i. e., 0 0:  q q q . Then, the above process is repeated 
till   equals one. This is just the LCM.  If 
cannot reach the value of 1, the value of   is the 
limit load multiplier that the LCM is able to seek. In 
general, clearly, the LCM fails to converge even in 
advance of the limit state. As a result,   is always 
below the real limit load multiplier using LCM. 

It is supposed the incremental displacement degrees 
of freedom vector is p  due to the application of q , 
with nRp . If p  is taken as the primal variable, 
then the system (33) is the system of nonlinear 
equations in p , where   is nonlinearly dependent 
on p . The LCM for system (33) is usually the Newton 
method, creating a quite diffenent programming 
structure from DCM. In order to be convenient to 
switch from LCM to DCM, we propse applying the 
more efficient method to solve system (33) as follows. 

The substitution of the decomposition (16) of 
elastic-plastic stresses, together with Eqs. (14), (10) and 
(32) into Eq. (33) leads to the system of nonlinear 
equations in p  

 Kp q r                               （34） 

where K  is the elastic stiffness matrix 

e
T

e
d  K B DB                         （35） 

K  keeps invariant during the iteration of system (34); 
vector r  depends nonlinearly upon p , reading 

e
T

0 p
e

d r q B                        （36） 

with p  defined by Eq.(10), but 0q  keeping 
invariant, defined by 

e
T

0 0 0
e

d q q B                        （37） 

In LCM,   is given. The system (34) has an equal 
number of equations and unknowns, denoted by n . 
Each equation in system (34) represents a surface in 

nR , with the n  components of vector p  acting as 
coordinates. The solution of system (34) is actually to 
find the intesection of the n  surfaces. The coordinate 
vector of the intersection is just p . If the set of finite 
elements is approaching the limit equilibrium state, the 
LCM will be incapable of convergence. At this moment, 
we need to turn to the DCM. Here is the idea of the 
DCM. 

If   is deemed unknown, the system (34) 
includes n equations but 1n   unknowns, i.e.,  ,p , 
which define a curve C in 1nR  , called the equilibrium 
path. The curve C is the intersection of the n surfaces in 
system (34). The LCM is actually to cut the curve C 
with a series of super-planes of “  =constant”. As a 
result, only if   can act as the parameter of curve C, 
or in other words, only if curve C is not parallel to the 
plane of “  =constant”, it is possible to cut curve C 

7

ZHENG et al.: One package of schemes for some difficult issues in finite elemen

Published by Rock and Soil Mechanics, 2021



                          ZHENG Hong et al./ Rock and Soil Mechanics, 2021, 42(2): 301314                    308   

 

with a plane of “  =constant”; or equivalently, to trace 
curve C using LCM. Otherwise, no intersection exists 
because a plane of “  =constant” is parallel to curve C, 
causing the LCM to fail to converge. 

In order to continue tracing curve C, we let a 
component of p, say ip , be given, while   un-
known, to solve system (34). This is actually to cut 
curve C with a series of planes of “ ip =constant”, 
which is just the DCM. 

Instead of the Newton method, the direct iteration 
method is applied to system (34) under the condition 
that ip  is given. In iteration, vector r  is regarded as 
a known quantity that depends on the former iterate 

kp  of p , which leads to the iteration scheme of 
system (34) 

1 1k k k  Kp q r                         （38） 

with the superscripts of k  and k +1 being the itera-
tion number. In this way, the coefficient matrix K is 
always symmetric and positively definite for either the 
associated flow or the non-associated flow. As is well 
known, in the case of the non-associated flow, the 
tangential stiffness matrix is asymmetric. Consequently, 
the proposed solution is at least superior in memory 
storage to the conventional tangential stiffness matrix. 
Moreover, the condition number of the tangential 
stiffness matrix in LCM becomes bigger and bigger 
while approaching to the limit state, causing worse and 
worse the numerical property of the relevant system of 
linear equations in LCM. However, the iterative 
scheme (38) overcomes completely this problem, 
because the elastic matrix K is always best in the aspect 
of numerical properties amongst all the tangential 
stiffness matrices. As a result, the proposed DCM 
enjoys much better numerical properties than the LCM 
with tangential stiffness matrices. 

Pre-multiplying both the sides of system (38) with 
1K , we have 

1 1k k k
q r  p p p                          （39） 

Here, qp  is the elastic displacement vector due to the 
load q , namely, qp  is the solution to the system 

q Kp q                                   （40） 

and qp  also keeps invariant during iteration. k
rp  in 

system (41) is the elastic displacement vector due to the 
load kr , i.e., the solution to system 

k k
r Kp r                                  （41） 

and k
rp  depends on p

k , while p
k  on kp . 

4.2 LCM 
If LCM is applied to the iteration scheme (39), we 

always let 1k   1k   =constant, and then solve for 
the incremental displacement degrees of freedom 
vector p  caused by the incremental load vector q . 
But LCM the fits only to case where the set of finite 
elements has not reached the limit equlibrium state. 

4.3 DCM 
If DCM is appled to the iteration scheme (39), let 
1k    be unknown while the ith component 1k

ip    of 
1k p  be known, namely, 

1k
i ip p                                   （42） 

Considering the plastic deformation and the elastic 
deformation have the same tendency if the same load is 
applied to the system, we specify ip  as the maximum 
absolute component of vector qp , in which qp  is the 
elastic deformation due to the application of the 
incremental load vector q  at the current load step, see 
Eq. (40). 

By substituting Eq. (42) into the ith equation of Eq. 
(39) and solving for 1k  , we have 

1
k

k i ri

qi

p p

p
  

                             （43） 

in which, qip  and k
rip  are the ith component of qp  

and k
rp , see Eqs. (40) and (41), respectively. 

Finally, the substitution of 1k   calculated by Eq. 
(43) back to Eq. (39) will give rise to 1k p . 

After each iteration, if 

1
p

k k
qe


 p p p                       （44） 

is satisfied, the iteration process is terminated, and then 
the update of displacements and stresses is carried out, 
that is to say, 1k p   is added to the total node dis-
placement vector and 1k  is assigned to 0 , and so 
on. pe   in Eq. (44) is the user specified relative 
tolerance. 

As for the iterative initial value 0p   of p  , it is 
feasible to take qp   caused by the incremental load 
vector q  as 0p , namely, 

0
qp p                                  （45） 

Different from LCM which is applicable prior to the 
limit equilibrium state, DCM is applicable to the whole 
deformation history. The closer to the limit equilibrium 
state the discrete system is, the more efficient the DCM 
will be. If the discrete system is in the limit equilibrium 
state, the DCM has a surprising convergence rate: 
usually two or three iterations are needed to converge. 

It can be seen from the above deduction that DCM 
and LCM have a highly analogous programming 
structure. 
4.4 Algorithm FEPT for tracing the full equilibrium 
path 

While evaluating the bearing capacity of a ground 
foundation or the factor of safety of a slope, it is 
necessary to bring the discrete system to the limit 
equilibrium state, i.e., to trace the full equilibrium path. 
The goal can be reached by consecutively invoking 
DCM. In the following, we call the algorithm FEPT, the 
acronym of “the Full Equilibrium Path Tracing”. 

Suppose i   is the load multiplier after the ith 
invocation of DCM. Clearly, if i   approaches zero, 
then the discrete system is nearly at the limit 
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equilibrium state. At this time, 

L i
i

                                   （46） 

is the limit equilibrium multiplier relative to the 
incremental load q . 

The parameteric equation of path C with  ,p  
acting as the coordinates in 1nR   is assumed to be 

 sp p ，  s    

where s  is the parameter taken by curve C. In general, 
we are incapable of having the analytical expression of 
curve C. By consecutively invoking DCM, however, 
what we will obtain a series of discrete points  ,k kp ，

1,2,k   , on curve C, 

   k k k ks s  ，p p                      （47） 

If each invocation of DCM takes an equal elastic step 

ip , then parameters k is kp , with ip  defined by Eq. 
(42) and the explanation just below it. 

5  Application to slope stability analysis 

In case of complicated failure modes, the defor-
mation based finite element method is advantageous in 
many aspects over the classical limit analysis or the 
limit eqilibrium method. For example, if the critical slip 
surfaces of slopes cannot be simplified as lines, circular 
arcs or logarithmic spiral lines, the conventional limit 
analysis becomes very clumsy. Nevertheless, provided 
the slope is brought into the limit equilibrium state 
through strength reduction, the critical slip surface is 
able to be identified automatically. As such, the finite 
element strength reduction technique has been advocated 
by many researchers[18–28]. Some giant comercial soft-
ware companies even have developed products based 
on this technique. 

While a slope approaches the limit equilibrium state, 
the tenstion crack usually comes at the slope top. The 
slope stability factor will be reportedly overestimated 
by 70% if the tension crack is ignored in the stability 
analysis[23]. Duncan and Wright[24] proposed that a 
tension crack be set or a yield surface including tension-
shear failure be used in case that tension stress is 
encountered. 

In the traditional limit equilibrium method, the 
location and depth of the tension crack at the slope top 
are determined by a test-and-error technique, where 
numerous artificial assuptions are introduced[25]. 

In the limit analysis, the tension crack is regarded 
as part of the critical slip surface and the remaining is 
regarded as a logarithmic spiral line segment. The 
critical slip surface is obtained by minizing the critical 
height of the slope. Although the limit analysis fits only 
to simple failure modes, the upper bound method 
appears to become a little hot point since Michalowski 
[26], see refs. [27–29]. 

By applying a no tension cut-off Mohr-Coulomb 
criterion and the finite element strength reduction 

technique, in principle the tension cracks at the slope 
tops are able to be captured automatically. But the case 
is not like this. Till now, the finite element strength 
reduction technique has been limited within the intact 
Mohr-Coulomb criterion and the like, especially the 
Drucker-Prager yield surface. The reason for this is that 
non-smooth points are left after an intact yield surface 
is cut off its tension part, even if the yield surface itself 
is smooth, such as Drucker-Prager yield surface. Since 
essential difficulties have been overcome in the 
constitutive integration for plasticity with non-smooth 
yield surfaces, the tension cracks are expected to be 
captured using the finite element strength reduction 
technique. 

Now we can realize one of advantages that the 
system of equilibrium equations is written in the form 
of Eq. (33) is to consider the influence of different stress 
paths on the slope stability. 

Denoting by 0  the initial stress field of the slope, 
the equivalent node load vector in balance with 0  is 

e
T

0 0
e

d q B                           （48） 

Suppose the incremental equivalent node load 
vector of the slope is q , which might be caused by the 
quasi-static load due to the earthquake or by an 
excavation. 

Using the algorithm FEPT in section 4.3, we can 
find the limit load multiplier L  relative to q . A dif-
ferent stabilization method will create different q  and 
the relevant L  . The larger L   is, the safer the 
stabilization method will be. 
5.1 Computation of safety of factor 

Problems arising from both evaluating bearing 
capacity of ground foundations and analyzing stability 
of slopes belong to strength problems. But the 
evaluation of bearing capacity of a ground foundation 
is to bring the ground foundation into the limit equi-
librium state through overloading while the strength 
and deformation parameters of soils are kept invariant. 
The bearing capacity of the ground foundation is 
measured by overloading factor L  , which can be 
obtained by directly applying the algorithm FEPT. The 
analysis of slope stability is to bring the slope into the 
limit equilibrium state through strength reduction while 
the external loads are kept invariant. The slope stability 
is measure by the factor F of safety, which accordingly 
cannot be obtained by direct applying the algorithm 
FEPT. 

Take the Mohr-Coulomb material as an instance. 
Suppose c and   are the cohesion and inner frictional 
angle. The slope stability analysis is to find the strength 
reduction factor Z such that the slope will be at the limit 
equilibrium state if the strength parameters c and   
are replaced by Zc   and Z  , respectively, which are 
defined by 

tan
,  tanZ Z

c
c

Z Z

                       （49） 
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While c and    are reduced, it is proposed that 
Poisson’s ratio   be adjusted to Z  such that 

sin 1 2≥Z Z                             （50） 

The adjustment is very easy. Dassault has inserted the 
automatic adjustment process into its software product 
according to the adjustment procedure in ref.[30]. 
 

 
Fig. 4  Relationship between strength reduction factor Z 

and limit load multiplier L 
 

For the given strength reduction factor Z, the limit 
load multiplier  L Z  relative to load q can be found 
by invoking algorithm FEPT. Obviously  L Z  is a 
strictly monotonically decreasing function, while the 
factor F of safety is just the unique root of the univariate 
equation  L Z =1, as shown in Fig. 4. Using this fact, 
it is easy to design an algorithm for finding F by using 
the secant method; and also the factor of safety is 
unique if both the compatibility condition and the static 
admissibility condition are satisfied. The static admissi-
bility condition demands that a stress field satisfies the 
equilibrium condition without violating the yield 
condition. The safety of safety has proved not to be not 
unique if the compatibility condition is not satisfied. 
For example, the factors of safety by the Morgenstern-
Price method and the rigorous Bishop method are not 
always equal although the force systems caused by the 
two methods are both statically admissible. 
5.2 Location of tension cracks at slope tops 

Denote by 1  the major principal strain caused by 
the incremental load q. Then, the tension region in a 
slope is the one in which 1 ≥ 0. Part of the slope top 
is always tensioned. A tension crack should be at the 
position where 1  reaches the maximum. In this study, 
the following method is proposed to locate the tension 
crack. Find among all the elements the Gauss point G 
at which 1   reaches the maximum. Then, draw a 
vertical line passing point G. The part of the vertical 
line within the tension region at the slope top is 
specified as the vertical line. 

6  Illustrative examples 

The principle of the algorithm GSPC of constitutive 
integration for plasticity can be referred to [14], where 
more examples are given to illustrate the features of 
GSPC. So demonstrated here are applications of the 
proposed procedures to the stability analysis of slopes, 

particularly to the location of tension cracks at the top 
of slopes. More sophisticated slope examples are 
available in [9]. 
6.1 A homogeneous soil slope 

Figure 5(a) shows a homogeneous soil slope with a 
height of 20 m and a slope angle of 45°, designed by 
Cheng et al in [31]. The soil has a unit weight      
25 kN/m3, cohesion c  42 kPa, internal friction angle 
   30, Young’s modulus E   30 MPa, Poisson’s 
ratio    0.3. Figure 5(b) displays the finite element 
mesh with the left and right boundaries smoothly 
supported and the bottom fixed both horizontally and 
vertically. All the elements in the mesh are quadrilateral 
elements. Integration over each element is 22 order 
Gaussian quadrature. The tolerance in DCM is pe 
1%, see Eq. (44). 

Let s
MCF  and s

CutF  represent the factors of safety 
by using the intact the Mohr-Coulomb yield surface and 
the tension cut-off Mohr-Coulomb yield surface, 
respectively. 

The outcomes of s
MCF   1.537 and s

CutF   1.512 
imply that ignoring tension failure overestimates the 
factor of safety only by 1.65%, an error completely 
acceptable for engineering. 

 
 

      
(a) Model geometry（unit: m） 

 

 
(b) A mesh configuration 

Fig. 5  Model geometry and mesh configuration 
 
Figure 6 displays the distribution of the equivalent 

plastic strain p  at the moment when the slope reaches 
the limit equilibrium state, defined by, 

T
p p p

2

3
                              （51） 

where the summation is with respect to all the 
incremental steps, and p   the incremental plastic 
strain vector within a typical step. 

Figure 6 also displays the tension zone T  at the 
top of the slope in the limit equilibrium state. 

1 
(F, 1) 

L 

Z 

 

(25, 15)

(60, 0)(0, 0)

(0, 15)

(45, 35) (60, 35)
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(a) Intact M-C 

 

 
(b) Cut-off M-C 

Fig. 6  Comparison of failure mechanism (1 500 elements) 

 

Figure 6(a) clearly tells us that ignoring the tensile 

failure brings about the tension zone T  at the slope 
top extending to the left boundary. Further increasing 
model dimensions does not work and still T  extends 
to the right boundary of the model. This is an abnormal 
phenomenon familiar to those who have some experi-
ences of using the finite element strength reduction, 
which is usually believed the effect of finite model 
dimensions. Considering the tension failure causes a 
smaller T  in Fig. 6(b), seemingly more reasonable. 
Further, included in Fig. 6 are the tension cracks, which 
are determined by the method in section 5.2. 

The influence of mesh density is shown in Fig. 7, 
suggesting that with increasing mesh density, 

1) the failure zone becomes narrower and narrower; 
2) the factor of safety becomes smaller and smaller. 

This is because the FEM we are using is based on 
compatible displacement elements and always app-
roaches from below the exact displacement. Under the 
same external load level, certainly a larger deformation 
field results in a more dangerous slope and, as a result, 
the factor of safety is smaller. 

and 3) the location and depth of the tension crack 
converges prior to the failure zone; for example, at least 
at the mesh density of 1500 elements, the location and 
depth of the tension crack have become convergent, yet 
the failure zone have not. 

 

    
Intact M-C                                               Cut-off M-C 

(a) 395 elements 

 

    
Intact M-C                                                Cut-off MC 

(b) 6000 elements 

Fig. 7  Influence of mesh density 
 

The depth of tension cracks of slopes in the limit 
equilibrium state is still an open issue in theory. There 
have been many works on this issue. For example, 

Michalowski proposed in [26] an empirical interval of 
the depth of tension cracks for homogeneous slopes 
with no water 
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Tensile failure zone
区
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m mtan
4 2

c
h

 


   
 

                      （52） 

where    varies between 2 and 3.83; mc    and m  
are the mobilized strength parameters, namely, 

m
s

c
c

F
 , m

s

tan
tan

F

                      （53） 

By taking sF  s
CutF  1.512, the h-interval evaluated 

by Eq. (52) is (3.23 m, 6.18 m). To the authors’ view 

the interval is too large. 
The convergent depth estimated by the proposed 

analysis is 2.80 m, even below the lower bound of  
3.23 m evaluated by Eq. (52). In the following, we will 
show Eq. (52) exaggerates the depth of tension cracks. 
6.2 Influence of slope angle 

With the same mechanical parameters as the above 
example, let the slope angle   be 50, 60, 70, 80 
and 90. Table 1 lists the results, suggesting that before 
   exceeds 70 the difference in the factor of safety 
can be ignored using the intact M-C surface or the cut-

off M-C surface. If   >80, the difference increases 
sharply, and reaches 20% at  =90. Consequently, the 
stability of deep foundation pits must be analyzed under 
the condition of tensile strength cut-off. 
 
Table 1  Outcomes of different slope angles 

Angle 
/() 

s
MCF  s

CutF  
Difference 

/% 
45 1.512 1.537 1.63 
50 1.386 1.412 1.84 
60 1.180 1.218 3.12 
70 1.012 1.060 4.53 
80 0.851 0.928 8.30 
90 0.652 0.814 19.9 

 
By taking sF  s

CutF   1.06 corresponding to   = 
70, the interval of the tension crack depth is (17.02 m, 
32.60 m) according to the evaluation (52), while the 
slope height is only 20 m, and thus Michalowski’s 
overestimation is concluded. The depth evaluated by 
the proposed procedure is 4.8 m, a seemingly more 
practical value, displayed in Fig. 8. 

 

         
(a) Intact M-C                                                   (b) Cut-off M-C 

Fig. 8  Failure mechanism comparison (=70) 

 
7  Conclusions 

On the basis of assumption of elastic perfectly 
plastic deformation, we conclude: 

1) The relationship between stresses and strains in 
the rate form can be reduced to a system of differential 
complementary equations, DCE for short. 

2) For the associated flow rule, the solution to the 
DCE is existent and unique; for the non-associated flow 
rule with the no tension cut-off Mohr-Coulomb surface, 
the solution to the DCE is existent and unique, either. 

3) When one of the conditions in item 2) is satisfied, 
the Gauss-Seidel iteration based projection-contraction 
algorithm, GSPC, is always convergent for arbitrary 
large strain increments, but irrelevant to whether the 
yield surface is smooth or not. Furthermore, the 
algorithm GSPC is advantageous in robustness and 
solution efficiency over the return-mapping algorithm. 

4) The solver, which is designed for the system of 
equilibrium equations by utilizing the decomposition of 
elastic-plastic stresses, i.e., Eq. (16), enables the load 
controlled method (LCM) to have the similar 
programming structure to the displacement controlled 
method (DCM), in which DCM is able to bring stably 

and efficiently the discrete system into the limit 
equilibrium state. 

5) The factor of safety is unique as long as the 
relevant stress field is deformation compatibility con-
dition and static admissibility condition. 

In addition, the formula for computing partial 
derivatives of principal stresses with respect to com-
ponent stresses simplifies the constitutive integration, 
and seemingly fills a gap in the stress analysis. 

It is worth noting the theory and algorithm for 
constitutive integration of plasticity apply only to the 
case of elastic–perfectly plastic materials. Now we are 
investigating the constitutive integration of plasticity 
with hardening or softening flow rule, and will have 
relevant results to come. 
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Appendix Algorithm of GSPC 

The algorithm GSPC for MiCP  ,I Ef f   defined 
in Eq. (17) is invoked in this way: 

 ,    GSPC  0 0,                      （A1） 

The input arguments of 0λ   and 0σ   are the initial 
guess of λ   and σ  , respectively. In general, 0λ  =0, 

0σ  = eσ  , with eσ   defined in Eq.(14). Here and 
subsequently, all the notations are explained in the text. 

The pseudocodes of GSPC are listed as follows, in 
which //2* represents this is the second note to be 
explained after the codes, and so on. 

Step 0: Let 1I E   ; 0k  ; 

Step 1:  max , ,0I I   f    ; //1* 

 ,E E  f    ; 

if ≤  
    and ≤  

    //2* 

then   ;   ; break; 

   
2

2

, ,I I I
r

 




f f   

 
;  //3* 

while r     //4* 

2 1
min 1,

3I I r
 

 
  

 
;  max , ,0I I   f    ; 

   
2

2

, ,I I I
r

 




f f   

 
; 

end(while); 

   
2

2

, ,E E E
r

 




f f   

 
; 

while r   

2 1
min 1,

3E E r
 

 
  

 
;  ,E E  f    ; 

   
2

2

, ,E E E
r

 




f f   

 
; 

end(while); 

       , , ,I I I       d f f        ; 

   
 

T

2

2

,

,









d

d

   

 
;  ,  d    ;  //5* 

if ≤r   then 1.5I I  ;  //6* 

       E E E, , ,       d f f        ; 

   
 

T

2

2

,

,









d

d

   

 
;  ,  d    ; 

if ≤r   then E E1.5  ; 

Step 2. 1k k  ; go to Step 1. 

//1* 
Suppose  iaa   and  ibb   are two given 

vectors of the same dimension, the expression 

 max ,c a b                            （A2） 

generates the vector  icc  of the same dimension as 
vector a , with ic    max ,i ia b . 

//2* 
1) Suppose x   is n-dimensional vector with 

components of 1, , nx x , then 

 1max , , nx x

 x . 

2)   and   are the relative error tolerances of 
λ   and   , with   =   = 10–4 say, a very high 
precision control. 

//3* 
Suppose x   is n-dimensional vector with com-

ponents of 1, , nx x , then 

 
1

2 2 2
1 12

, ,x x x                        （A3） 

//4*, //5* and //6* 
According to He [15], parameter   0.9, parameter 

  1.9, parameter   0.4. 
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