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Abstract: The scientific prediction of the TBM penetration rate is of great significance to the selection of hydraulic tunnel 

construction methods, construction schedule and cost estimation. In view of the high nonlinearity, fuzziness and complexity of TBM 

excavation process, and in order to improve the prediction accuracy and computational efficiency, the partial least squares regression 

(PLSR) has been applied to extract the principal components of the influencing parameters. Then the deep neural network (DNN) is 

employed to train and forecast the TBM penetration rate. A prediction model of TBM penetration rate based on the coupled method of 

PLSR and DNN is proposed. Based on the measured data of the double-shield TBM construction of a water conveyance tunnel in the 

Lanzhou water source construction project, six impact parameters including the rock uniaxial compressive strength, rock uniaxial 

tensile strength, cutter head thrust, cutter head speed, rock mass integrity coefficient and rock Cerchar abrasiveness index are selected 

to verify the prediction reasonability of the model. The fitting and prediction accuracy of the different prediction methods are 

compared and analyzed. The research results show that the PLSR can effectively overcome the problem of multiple collinearity 

between the independent variables. The extracted principal components are trained as the input layer of the DNN, which simplifies 

the structure of the neural network. The PLSR-DNN coupled model effectively avoids the over-fitting and inadequate fitting problems. 

It has the characteristics of fast convergence, stable solution and high fitting accuracy. The average relative fitting error of the 

PLSR-DNN prediction model is 2.96%, and the average relative prediction error is 3.27%. The fitting accuracy and prediction 

accuracy of the PLSR-DNN prediction model is significantly higher than those of PLSR model alone, BP neural network model and 

SVR model, respectively. 

Keywords: tunnel boring machine; penetration rate; partial least squares regression; deep neural network; coupling prediction model 
 

1  Introduction 

With the construction of a large number of major 
infrastructure projects such as highways, railways, 
mining, urban subways, and water diversion tunnels, 
the tunnelling and underground construction projects 
are embracing significant development opportunities. 
The full-face rock tunnel boring machine (TBM) has 
many advantages in terms of high efficiency, safety 
and low environmental impact, and is widely used in 
the construction of long-distance tunnels (caverns). 
However, TBMs also face problems and shortcomings, 
such as the geological conditions sensitivity and high 
initial investment. The precise prediction of TBM 
tunnelling performance under different geological 
conditions is essential for construction method selection, 
construction schedule control and cost estimation[1–2]. 
Due to the influence of many factors such as geological 
factors, mechanical parameters, tunnelling parameters 
and engineering management, it is very difficult to 
accurately predict the tunnelling performance of TBM. 
Therefore, the scientific and reliable prediction of the 

TBM tunnelling performance under complex geological 
conditions has become one of the challenges requiring 
timely solutions.  

There have been many prediction models of TBM 
performance evaluation developed, which can be divided 
into two categories: theoretical models and empirical 
models. The theoretical models mainly include the Sanio 
model[3], the dimensional model[4] and the CSM model[5]. 
The empirical models mainly include the simple emp- 
irical model[6–8], the NTNU model[9], the QTBM model[10], 
the Alber model[11], the neural network model[12–13], the 
RME model[14] and the multiple regression model[15–23] 
etc. TBM tunnelling performance evaluation indicators 
mainly involve construction speed (AR), net penetration 
rate (PR), equipment utilization (U) and tool wear[1]. Most 
of the current TBM tunnelling performance prediction 
research focuses on the net penetration rate prediction 
considering its importance in evaluating tunnelling 
performance. According to incomplete statistics, the 
proposed TBM net penetration rate prediction models 
are summarized in Table 1.    
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Table 1  Summary of TBM performance prediction model parameters 

Source Model description Method category Prediction object Model parameter 
Tarkoy (1973) [6] Simple model Empirical PR HT 
Graham (1976) [7] Simple model Empirical PR UCS, Fn 
Nelson (1983) [8] Simple model Empirical FPI, PR HT 
Sanio (1985) [3] Sanio Model Theoretical/ empirical PR IS 
Boyd (1986) [4] Dimensional model Theoretical/ empirical PR HP, SE, A,  

Rostami (1997) [5] CSM model Theoretical/ empirical PR UCS, BTS, RPM, Torque, Sc, Dc, wt, , Fn 
Bruland (1999) [9] NTNU model Empirical PR, U, AR DRI, BWI, CLI, UCS, RPM, Fn, Sc, Jc, Dc,  
Barton (2000) [10] QTBM model Empirical PR QTBM 
Alber (2000) [11] Alber model Empirical PR UCS, RPM, RMR, Fn 

Grima et al. (2000) [12] Neural network model Empirical PR CFF, UCS, RPM, Torque, Dc, Fn 
Benardos et al. (2004) [13] Neural network model Empirical PR UCS, RQD, RMR, Overburden 
Bieniawski et al.(2007) [14] RME model Empirical AR, PR RME 

Yagiz et al. (2009) [15] Multiple regression model Empirical PR UCS, BTS, Bi, DPW,  
Gong et al. (2009) [16] Multiple regression model Empirical BI, PR UCS, Bi, Jv,  

Hassanpour et al. (2011) [17] Multiple regression model Empirical FPI, PR UCS, RQD 
Delisio et al. (2014) [18] Multiple regression model Empirical PR, AR UCS, TF, RPM, Jv, Dc 

Du et al. (2015) [19] Multiple regression model Empirical FPI, PR UCS, Kv 
Fattahi et al. (2017) [20] Multiple regression model Empirical PR UCS, PSI, DPW,  

Liu et al. (2017) [21] Multiple regression model Empirical FPI, PR UCS, Kv, , H 
Wang et al. (2017) [22] Multiple regression model Empirical PR, U, AR RMR 

Armaghani et al. (2018) [23] Multiple regression model Empirical PR UCS, BTS, RPM, RQD, RMR, TF 

Note: A is the cross-sectional area of the tunnel; BI is the rock excavability index; Bi is the rock brittleness index; BTS is the rock tensile strength; BWI is the 
bit wear index; CLI is the cutter life index; CFF is the core fracture frequency; Dc is the diameter of the cutter disc; DPW is the spacing between the structural 
planes; DRI is the drilling rate index; Fn is the thrust of a single cutter; FPI is the field penetration index; H is the average overburden thickness above the 
tunnel section; HP is the hob power; HT is total rock hardness; IS is the point load strength; Jc is the structural plane condition; Jv is the number of structural 
planes per cubic meter of rock mass; Kv is the integrity factor of the rock mass; Overburden is the thickness of the overburden; PSI is the peak slope index; 
RME is the rock mass excavability index; RMR is the rock mass rating; RPM is the rotation speed of the cutterhead; RQD is the rock quality designation; SC is 
the hob spacing; SE is the specific energy; TF is the total thrust; Torque is the torque;  is the angle between the tunnel and the structural plane; QTBM denotes 
Q system in TBM construction; UCS is the rock compressive strength; wt is the blade width of the hob;  is the contact radian between hob and rock mass. 

 

Although the aforementioned TBM net penetration 
rate prediction models have their own advantages, there 
are also limitations of them at different levels. For example, 
the theoretical model is quite different from the actual 
situation; the simple model considers fewer influencing 
factors, and the prediction accuracy of the model is 
relatively low; some parameters in the NTNU model 
have poor versatility and are difficult to obtain, which 
limits its application [24–26]; The system parameters of 
the QTBM model are excessive and complex, including 
some parameters that are low in sensitivity to the tunnelling 
performance[26]. The prediction stability as well as the 
ability to solve nonlinear problems of the traditional 
multiple regression model is inadequate due to the 
influence of multicollinearity among independent 
variables. In addition, Nelson et al.[27] developed a 
probabilistic prediction model based on a large number 
of measured tunnel engineering data. The accuracy of 
the model's prediction mainly depends on the degree 
of similarity between the predicted tunnel parameters 
and the parameters in the database, but these parameters 
are not suitable for tunnel geological conditions in China. 
As a result, its application is also subject to restrictions[1]. 
Consequently, the simultaneous improvement of the 
prediction accuracy and the efficiency of TBM tunnelling 
performance, while reducing the parameter redundancy 
and enhancing the calculation stability, has become an 
urgent problem to be solved in the research of TBM 
net penetration rate prediction model. 

Neural network possesses a strong memory-dependent 
learning ability and is an effective tool to tackle non- 
linear problems. It has been applied in the prediction 
of TBM tunnelling performance (see Table 1). However, 

when there is multiple collinearity between input variables, 
neural networks often face problems such as unstable 
learning process and slow calculation convergence 
speed[28]. Improving the learning efficiency of neural 
networks is therefore worth further research. Compared 
with the BP neural network, deep neural network (DNN) 
has better learning effect and can fit functions with high 
nonlinearity and complexity. Partial least squares reg- 
ression (PLSR) is a multivariate data statistical analysis 
method that integrates the advantages of three methods 
including the multivariate linear regression, principal 
component analysis and canonical correlation analysis, 
which can effectively solve the problems of multi- 
parameters, small samples and unsteady states, and 
therefore having a high application value[29–30]. The 
outstanding advantage of this method is that by extracting 
the principal components that have the strongest exp- 
lanatory properties to the system, it can better solve 
the multicollinearity effect between the independent 
variables. PLSR has been applied in the fields such as 
chemistry, finance, medicine, and engineering, and has 
achieved competent prediction results. However, the 
use of PLSR and DNN coupling method for predicting 
TBM tunnelling performance has not yet been reported. 

In view of this, this paper proposes a prediction model 
for TBM net penetration rate based on coupling PLSR 
and DNN, with the advantages of both models being 
fully leveraged. The measured data from the double- 
shield TBM construction of the water delivery tunnel 
of the Lanzhou Water Source Construction Project is 
used to verify the superiority and rationality of the 
prediction model. The proposed method can provide 
scientific and practical reference for the evaluation and 
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prediction of the relevant TBM tunnel construction. 

2  PLSR-DNN based model coupling method 

2.1 Partial least squares regression (PLSR) 
PLSR is a principal component regression analysis 

method. Its outstanding advantage is that it can overcome 
the multicollinearity between multiple variables[28], and 
can effectively solve the multiple regression problem 
of multiple dependent variables to multiple independent 
variables. When only one dependent variable is considered, 
the basic principle is as follows[29–30]. Suppose there is 
a dependent variable y and p independent variables 1x , 

2x , 3x , , px  and the number of samples is n, and the 
resulting matrix 1[ ]ny Y and 1[xX , 2x , 3x , , ]p n px   
is formed. The components t1 and 1u  in X and Y are 
extracted, respectively, where 1t  is the linear com- 
bination of 1x ， 2x ， 3x ，， px  and 1u  is the linear 
combination of Y ( 1u y ). When extracting components, 
all possible information in the original matrix should 
be included in 1t  and 1u , and the correlation between 

1t  and 1u should be maximized. 
After extracting the first pair of components, the 

regression of X and Y to 1t  is performed, respectively. 
If the regression equation has reached a satisfactory 
accuracy at this time, the extraction can be stopped; 
otherwise, it continues to extract the second pair of 
components from the remaining information. Circulation 
according to this rule is performed until a satisfactory 
accuracy is reached. PLSR usually does not require all 
components to be selected for regression modelling, 
the selection of only the first m components (i.e. prin- 
cipal components) is sufficient to obtain a model with 
reasonable predictive ability. To determine the number 
of principal components, cross-validation analysis is 
usually used. If m components 1t ， 2t ， 3t ，， mt
（ m n ） are finally extracted from X, PLSR 
implements the regression of the dependent variable y 
on 1t ， 2t ， 3t ，， mt  and then converts it into the 
regression equation of Y on the original independent 
variable X, that is, the PLSR equation. The specific 
process of the PLSR method is shown in Fig. 1. 

 

 
Fig. 1  Flowchart of partial least squares regression 

 
2.2 Deep neural network model (DNN) 

Neural network belongs to the category of artificial 
intelligence. It can reflect the highly nonlinear mapping 

relationship between network input parameters and output 
targets, reveal the nonlinear relationship contained in 
the sample, and simulate information processing mech- 
anism of the brain to perform flexible processing on 
unknown variables that are multi-causal and complex[31]. 
In recent years, with the rapid development of artificial 
intelligence and deep learning, deep neural networks 
(DNN) have received great attention and applications. 
They combine low-level features to form more abstract 
high-level features through multi-layer nonlinear trans- 
formations[32]. Compared with traditional single- 
hidden-layer neural network (such as BP neural network), 
deep neural network has stronger nonlinear expression 
ability, and each hidden layer is fully connected. Through 
layer-by-layer learning, the prediction error of the model 
can be continuously reduced, and the problems, such 
as local minima and vanishing gradients of BP neural 
network can be avoided. The typical deep neural network 
model structure includes an input layer, hidden layer(s) 
and an output layer, as shown in Fig. 2. The deeper the 
structure, i.e. with more layers and nodes, the better the 
model training effect—a 100% fitting accuracy can 
even be achieved. However, the consequence is the 
over-fitting of the model, and the prediction effect of 
the model on the test data is seriously reduced. Generally, 
it is necessary to consider the effective depth of model 
training to achieve a better prediction effect without 
over-fitting. Therefore, although the number of hidden 
layers in the model has a certain impact on the prediction 
accuracy, it is not that the more the better. A four-hidden- 
layer model is given as an example in this paper. The 
nonlinear activation function of the hidden layer adopts 
the ReLU function. This activation function can improve 
the generalization ability of the network, avoid the vanish- 
ing gradient problem and the prediction accuracy of 
which is high. The activation function of the output 
layer adopts the traditional Sigmoid function. 

 

 
Fig. 2  Typical deep neural network model structure 

 
2.3 Coupled modelling based on PLSR and DNN 

PLSR and neural network coupled modelling method 
has been applied in fields such as blasting vibration 
prediction[28] and dam monitoring[33–34]. However, it is 
worth mentioning that: (a)	the coupling method has not 
been applied to the prediction of TBM net penetration 
rate, and the effect of the application is unknown; and 
(b) the existing methods used BP neural network instead 
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of deep neural network (DNN). Based on this, it is 
necessary to explore how to comprehensively utilize 
the respective advantages of PLSR and DNN to establish 
a coupled prediction model. The coupled modelling 
idea of PLSR and DNN is as follows: First, use PLSR 
to extract the principal components of the independent 
variables, which represent the most meaningful informa- 
tion for the system, and effectively solve the multico- 
llinearity effects between variables; then, the m principal 
components extracted by PLSR are used as the input 
layer of the DNN, which replace the original independent 
variables for training and solving, so as to reduce the 
input nodes of the neural network, speed up the solution 
and enhance the stability of the model. The specific steps 
of PLSR and DNN coupled modelling are as follows: 

(1) Standardize data set. According to the literature 
[35], the independent variable matrix X and the dependent 
variable matrix Y of the sample are standardized, and 
then the standardized matrices 0E  and 0F are obtained, 
respectively. 

(2) Extract the principal components. Extract a com- 

ponent 1 0 1t E w from 0E , where 
T
0 0

1 T
0

w 
E F

E F
, and 

1 1w  , implement the regression of 0E  and 0F on 

1t , that is 

T
0 1 1 1t E p E                               （1） 

T
0 1 1 1t F r F                                （2） 

where 1p and 1r  are the regression coefficients matrices; 
and 1E , 1F  are residual matrices. 

T
0 1

1 2

1

t

t


E
p                                   （3） 

T
0 1

1 2

1

t

t


F
r                                   （4） 

Confirm the convergence status. If the regression 
equation has converged, stop extracting the principal 
components; if the regression equation does not con- 
verge, continue to extract the components of the residual 
matrix and perform the regression analysis again. 

(3) Determine the number of principal components. 
According to the cross-validation analysis method[34], 
for 1,2, ,i n  , the sum of squares of the prediction 
errors of the dependent variable Y can be defined as 
PRESSh , and there is 

2
( )

1 =1

ˆPRESS ( )
p n

hj i j hj i
j i

y y 


                   （5） 

When PRESSh  is the minimum, the corresponding 
h value is the determined number of principal components. 
If the regression equation is unstable and the fitting error 
is large, the equation is very sensitive to the change of 
the sample, and the value of PRESSh  increases at this 
time[36]. 

(4) Train coupled model. The m principal components 
obtained in the previous step are used as the input layer 
of the deep neural network for training and solving. 

(5) Predict. The parameter matrix to be predicted is 
standardized, and then substituted into the PLSR model 
to obtain the corresponding principal component matrix, 
which is then used as the input layer of the deep neural 
network for training, and finally the predicted value is 
calculated. 

It can be seen that the TBM net penetration rate pre- 
diction model based on the coupled modelling method 
of PLSR and DNN leverages the fundamental advantages 
of the two methods, which not only solves the problem 
of parameter multicollinearity, avoids overfitting, but 
also improves the performance stability and prediction 
accuracy of the model, and thus presenting high engi- 
neering application value. 

3  Project overview 

The Lanzhou Water Source Construction Project is 
located in Yongjing County, Linxia Prefecture and Xigu 
District, Lanzhou City, Gansu Province. It uses Liujiaxia 
Reservoir on the Yellow River as a water source to supply 
water to Lanzhou City. The project includes the main 
infrastructures of water intakes, water conveyance tunnels, 
water conveyance pipelines and water plants. Among 
them, the water conveyance tunnel is a controlled project 
with a total length of 31.57 km. The construction adopts 
TBM as the main method and drilling and blasting to 
provide auxiliary support. The designed excavation dia- 
meter of the tunnel is 5.46 m, and the diameter after the 
installation of lining is 4.60 m [37]. The TBM construction 
section is about 26.0 km long and is constructed by two 
double-shield TBMs operating towards each other at 
the same time. The section length constructed by TBM1 
is 12.426 km, and by TBM2 is 13.259 km [38]. TBM1 
enters from the No. 5 construction adit. The total length 
of the adit is 3.544 km. The designed longitudinal slope 
is –2.37%, which is for downhill tunnelling; TBM2 enters 
from the No. 6 construction adit, and commences tun- 
nelling towards the tunnel entrance along the direction 
of the main tunnel. The TBM excavation section of the 
main water conveyance tunnel adopts uphill excavation, 
and the designed longitudinal slope is 0.1%. The main 
design parameters of the two TBMs refers to the litera- 
ture[39]. 

The average buried depth of the water conveyance 
tunnel is about 500 m, and the maximum overburden 
thickness is 918 m. During the TBM excavation process, 
the lithology of the strata along the tunnel is mainly 
quartz schist, diorite, granite, Cretaceous argillaceous 
sandstone, and metamorphic andesite. Quartz schist: 
the rock is hard mainly with flaky structure and well- 
developed schist. Diorite: the rock is hard and strong 
in weathering resistance, with less joint development 
and good rock integrity. Granite: the rock is hard with 
strong resistance to weathering, mostly present in the 
form of veins originated by invasion. The rock is well 
connected to the surrounding rock and has good rock 
mass integrity. Cretaceous argillaceous sandstone: 
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changes of local occurrences are relatively significant 
with relatively developed joints due to the influence of 
tectonic structure. The rock mass has fair rock mass 
integrity and is prone to disintegration once in contact 
with water. Metamorphic andesite: rock has strong 
weathering resistance. The rock mass lacks joints and 
has good integrity. The engineering geological profile 
of the water conveyance tunnel line is shown in Fig. 3. 

According to Code for engineering geological in- 
vestigation of water resources and hydropower (GB50487- 
2008)[40] Appendix N: Classification Method of Sur- 

rounding Rocks, type III is main surrounding rock type, 
accounting for 47.5%; types II and IV are second, 
accounting for 35.7% and 15.3%, respectively; occurrence 
of Category V is low, accounting for about 1.5%. The 
groundwater types along the water conveyance tunnel 
are mainly Quaternary pore phreatic water and bedrock 
pore phreatic water. The tunnel is generally located below 
the groundwater level. The maximum water inflow of 
the TBM1 construction section is estimated to be 400 
m3/h. In general, the surrounding rock conditions are 
suitable for using the TBM tunnelling method. 

 

 
 

Fig. 3  Engineering geological section of the water conveyance tunnel 

 

4  Coupled prediction model 

4.1 Parameter selection and data sources 
There are a variety of factors affecting the net pen- 

etration rate of TBM, including surrounding rock geo- 
logical conditions, mechanical conditions, excavation 
parameters, and construction management level. Research 
and practice have shown[1] that the commonly used 
factors and indicators for the prediction of TBM net 
penetration rate mainly include rock uniaxial com- 
pressive strength, rock uniaxial tensile strength, rock 
abrasivity, structural planes, rock mass integrity coef- 
ficients, mechanical parameters, tunnelling parameters, 
groundwater and ground stress. In view of the construc- 
tion characteristics of the double-shield TBM, it is 
difficult to directly observe and check the surrounding 
rock conditions of the face. At present, most of the 
parameters used to characterize the discontinuity of 
the rock mass are subjectively estimated by the engineers, 
and these parameters cannot be directly used in the 
prediction and analysis[1]. Tunnelling parameters include 
cutterhead thrust, cutterhead speed, cutterhead torque 
and penetration, etc. Among them, the cutterhead thrust 
and cutterhead speed are actively controlled, while the 
parameters such as cutterhead torque and penetration 
are driven. Therefore, the cutterhead thrust and cutterhead 
speed can be selected during analysis. Although ground- 
water has a certain impact on the TBM excavation rate, 
it is generally believed that the groundwater condition 
has little effect on the net penetration rate, and the impact 
of groundwater is difficult to quantify. Since there is no 
high in-situ stress in the area where the Lanzhou water 
source tunnel project is located, this study did not consider 

the impact of high in-situ stress. The parameters commonly 
used in the prediction model are shown in Table 1. 

When predicting the net penetration rate of TBM, 
the selection of influencing parameters is not necessarily 
the more the better. On the one hand, the model will 
be more complicated and inconvenient to apply when 
considering more parameters; on the other hand, some 
parameters are relatively difficult to obtain accurately, 
and the correlation of these parameters with the TBM 
net penetration rate is not sufficient, and thus the influence 
of these parameters over the model’s prediction accuracy 
is not significant. Ultimately, the selection of model 
parameters should consider the availability of parameters, 
the accuracy of prediction, the complexity of the model, 
and their use in previous studies [1]. According to the 
above analysis, the six parameters including rock uniaxial 
compressive strength (UCS), rock uniaxial tensile str- 
ength (BTS), cutterhead thrust (TF), cutterhead rotation 
speed (RPM), rock mass integrity factor ( vK ) and rock 
abrasivity (CAI) are selected and used as independent 
variables. In the TBM construction database of the water 
conveyance tunnel of the Lanzhou Water Source Con- 
struction Project, 50 sets of representative measured data 
are selected as the final sample data after the removal 
of some variability data that might affect the modelling. 
The descriptive statistics of the different variables in 
the sample data are given in Table 2. Among them, the 
parameters such as the uniaxial compressive strength, 
uniaxial tensile strength, rock mass integrity coefficient 
and abrasivity index are obtained through indoor tests; 
the tunnelling parameters such as cutterhead thrust, 
cutterhead rotation speed and TBM net penetration 
rate are acquired through the daily geological report 
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kept at the tunnel construction site. 
 

Table 2  Descriptive statistics of the database variables 

Variable 
UCS 
/MPa 

BTS 
/MPa 

TF 
/(103 kN)

RPM 
/(r/min) 

Kv CAI
PR 

/(mm/min)
Range 50.00 9.000 6.550 3.400 0.400 2.350 31.840 

Minimum 20.00 1.000 3.200 4.200 0.450 0.750 38.500 
Maximum 70.00 10.000 9.750 7.600 0.850 3.100 70.340 
Average 50.70 5.320 6.010 6.020 0.630 2.020 55.480 
Standard 
deviation 

16.537 3.437 2.123 0.911 0.123 0.944 7.624 

 
4.2 Parameter correlation analysis 

The correlation coefficients between different vari- 
ables are calculated, see Table 3. It can be seen from 
the table that there is a high correlation between the 
independent variables. For example, the uniaxial com- 
pressive strength of rock has a high correlation with 
the thrust and the speed of the cutterhead. There is also 
a high correlation between the uniaxial tensile strength 
of the rock, the thrust and the speed of the cutterhead. 
This is because the excavation parameters such as cut- 
terhead thrust and cutterhead speed are actually dynamically 
adjusted according to the geological conditions of the 
surrounding rock. In general, the higher the strength of 
the surrounding rock, the greater the thrust required, 
so there is an obvious correlation between them, and 
the correlation between these parameter variables tends 
to be detrimental to the modelling and analysis of the 
TBM net penetration rate.  

The problem of multicollinearity between independent 
variables will cause errors in the prediction model[41]. 
Traditional multiple linear regression and neural network 
methods cannot eliminate this multicollinearity problem. 
Commonly used solutions include principal component 
regression, stepwise regression, and PLSR. However, 
the principal component regression does not fully con- 
sider the relationship between the extracted principal 
components and the dependent variables, which leads 
to a decrease in prediction accuracy. Stepwise regression 
tackles the influence of multiple correlations by eliminating 
highly correlated variables, which leads to a significant 
reduction in model interpretability, and a decrease in 
model fitting accuracy and prediction. Based on this, it 
is necessary to use PLSR to eliminate the effects of 
multicollinearity among variables. 

 
Table 3  Correlation coefficient matrix between variables 

Independent 
variable 

PR UCS BTS TF RPM Kv CAI 

PR 1 –0.858 –0.840 –0.862 –0.847 –0.726 –0.724
UCS  1  0.868  0.862  0.856  0.645  0.854
BTS   1  0.904  0.729  0.671  0.874
TF    1  0.770  0.656  0.845

RPM     1  0.635  0.675
Kv      1  0.408

CAI       1 

 
It can be known from engineering practice that within 

a single formation, there is a positive correlation between 
the net penetration rate and the thrust and speed of the 
cutterhead, and the net penetration rate increases with 
the increase of the thrust and speed. However, for complex 

geological conditions, especially formations where soft 
and hard rocks alternately appear, the relationship between 
net penetration rate and cutterhead thrust and rotation 
speed becomes complicated, sometimes showing a negative 
correlation (see Table 3). This observation, however, is 
not inconsistent with the positive correlation between 
the net penetration rate and the thrust and speed of the 
cutterhead under the condition of a single formation. 
The reason is that the strength and abrasion resistance 
of different lithologies are quite different, resulting in 
a great difference in the net penetration rate. Under hard 
rock conditions, the net penetration rate is always low 
even when the thrust and speed of the TBM cutterhead 
are high; while in soft rock conditions, the net penetration 
rate is relatively high even when the thrust and speed 
of the cutterhead are low. Therefore, a negative correlation 
between the TBM net penetration rate and the cutterhead 
thrust and speed under complex geological conditions 
is in line with the actual operation situation[42]. It should 
be noted that this conclusion is based on the data of the 
thrust and rotation speed of the cutterhead of the double- 
shielded TBM cutterhead of the water conveyance tunnel 
of the Lanzhou Water Source Construction Project. The 
regularity outside this range needs to be verified. 
4.3 Modelling and effect analysis 

The PLSR is performed using Minitab, the change 
in PRESS value with the increase in the number of 
principal components can be calculated (see Fig. 4). 

 

 
Fig. 4  Variation of the PRESS value with increase  

of principal component 

 
As seen from Fig.4, the PRESS value is the lowest 

when two principal components are extracted. Thus, only 
the two principal components 1t and 2t  need to be 
extracted. The expression of the two principal com- 
ponents is 
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respectively. 
The two principal components 1t and 2t extracted 

by PLSR are used as the input layer of the deep neural 
network. At this time, the number of neuron nodes in 
the input layer is reduced from six to two, and the output 
layer has only one node, which is the TBM net penetration 
rate (PR). This helps achieve dimensionality reduction. 
It is very important to determine the number of nodes 
in the hidden layer of a deep neural network, as it is the 
direct cause of the "overfitting" phenomenon during 
training and has a great impact on the performance of 
the model[32]. After calculation, it is found that when 
the number of hidden layer neurons is 80, the correlation 
coefficient between the measured and predicted values 
of PR is the highest, and the error is also the smallest. 
Therefore, the number of neurons in each layer of the 
deep neural network can be determined to be (2, 80, 
80, 80, 80, 1). After training and testing the neural 
network, 50 sets of PR prediction values are obtained. 
The comparison between the actual measured value 
and the predicted value is shown in Figs. 5 and 6. 

 

 
Fig. 5  Comparison between the measured PR  

and predicted PR 
 

 
Fig. 6  Scatter plot of PR 

 
As displayed in Fig.5, the measured and predicted 

values of PR in the 50 sets of sample data are very close. 
While Fig. 6 shows that the errors between the measured 
PR value and the predicted value are small, and the linear 
fitting of the two is close to the 1:1 line, and the correla- 
tion coefficient R is 0.964. The calculation results show 
that among the 50 groups of PR prediction values, the 
maximum relative error is 7.35%, the average relative 
error is 2.96%, and the overall relative error is relatively 
small. From this analysis, it can be seen that the fitting 
accuracy of the coupled prediction model of TBM net 

penetration rate is reasonably high. 

5  Comparison and verification  

5.1 Comparison of model fitting accuracy 
In order to further verify the fitting accuracy of the 

TBM net penetration rate prediction model established 
by the PLSR-DNN coupling method, several prediction 
models for TBM net penetration rate estimation are 
established based on the 50 sets of data used above. 
These include a PLSR model, a DNN model, a BP neural 
network model and a support vector regression (SVR) 
model. The comparison of the fitting effects of the five 
PR prediction models is shown in Table 4. 

It can be seen from Table 4 that the correlation coef- 
ficient R between the PR predicted value and the measured 
value obtained by the PLSR-DNN coupled model is the 
highest, the average relative error is the smallest, and 
the fitting accuracy is generally better than the other 
four prediction models. Among the five prediction 
models listed in Table 4, the PLSR prediction model 
has the worst fitting accuracy, which also shows that 
although the PLSR analysis method can mitigate the 
multicollinearity effect between the independent vari- 
ables, its ability to deal with nonlinear problems is 
poor as a linear analysis method, and thus not recommended 
to be used on its own; as an effective tool for dealing 
with nonlinear problems, DNN models have competent 
fitting accuracy. Combining the two can achieve a sound 
fitting. For the three machine learning algorithms of 
DNN, BP neural network and support vector regression, 
DNN achieved the best fitting effect. 

 
Table 4  Comparisons of fitting accuracy for different 
prediction models 

Parameter
Correlation 
coefficient 

R 

Maximum 
error 

/(mm·min–1) 

Average error 
/(mm·min–1) 

Maximum 
relative 
error /%

Average 
relative 
error /%

PLSR 0.921 7.01 2.35 15.15 4.42 
DNN 0.956 6.37 1.98 12.56 3.67 

PLSR-DNN 0.964 4.57 1.76  7.35 2.96 
BPNN 0.940 8.12 2.11 18.29 3.99 
SVR 0.945 5.89 2.75 13.22 4.03 

 
5.2 Comparison of model prediction accuracy 

In order to further analyse the applicability and 
rationality of different methods and verify the prediction 
accuracy of the TBM net penetration rate based on the 
PLSR-DNN coupled model, 15 sets of measured data 
were randomly selected from the TBM construction 
database of the water conveyance tunnel of the Lanzhou 
Water Source Construction Project. The PR values pre- 
dicted by the PLSR model, DNN model, PLSR-DNN 
model, BP neural network model, and SVR model are 
compared with the actual measured values, and the relative 
error of the five prediction models are calculated, as 
shown in Fig. 7. 

As seen in Fig. 7, the PR value predicted by the PLSR- 
DNN coupled model is the closest to the measured value, 
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and its relative prediction error is the smallest. The maxi- 
mum relative prediction error in the 15 sets of verifica- 
tion data is 8.33%, and the average relative prediction 
error is 3.27%. After verification and comparison, it is 
found that the best prediction effect is achieved by the 
PLSR-DNN coupled, outperforming the other four, which 
further proves the effectiveness and reliability of the 
coupled prediction model. It can be seen that the pre- 
diction accuracy can be guaranteed by coupling the two 
methods. In summary, the TBM net penetration rate 
prediction model established by the coupling method 
of PLSR and DNN is reasonable and effective. 

 

 
Fig. 7  Comparisons of relative prediction errors for 

different models 

6  Discussion 

Based on the measured data of the double-shield 
TBM construction of the water conveyance tunnel of 
the Lanzhou Water Source Construction Project, this 
paper proposes a new TBM net penetration rate pre- 
diction model. The significant advantages of this model 
are: (1) The model leverages the advantages of the 
methods of PLSR and DNN and avoids their respective 
shortcomings, and has high fitting and prediction accu- 
racy. (2) The selected sample data sources cover 
igneous rocks, sedimentary rocks and metamorphic 
rocks, including hard rocks and soft rocks. The types 
of surrounding rocks cover a wide range, thus having a 
strong universality in terms of surrounding rock geo- 
logical conditions. (3) The rock mass parameters and 
tunnelling parameters are comprehensively considered, 
and the parameter selection is also comprehensive. 

However, the proposed prediction model is also sub- 
ject to certain application conditions and has limitations. 
For example, given the TBM equipment has been 
selected, the change of mechanical parameters (hob 
diameter, cutter spacing, etc.) cannot be considered; 
fault fracture zone and other adverse geological con- 
ditions are excavated using drilling and blasting, so that 
the data samples under different geological conditions 
are relatively limited. 

In general, the TBM net penetration rate prediction 
model proposed in this paper demonstrates significant 
advantages in parameter multicollinearity processing 
and prediction accuracy. In situations where considera- 

tion of the changes of TBM mechanical parameters is 
not required and tunnel geological conditions changes 
are not complicated, the TBM net penetration rate 
prediction model proposed in this paper gives superior 
performance, and can be extended to and provide a 
scientific reference to construction evaluations and 
predictions of similar TBM tunnelling projects.  

7  Conclusion 

(1) The principal components of independent vari- 
ables that are more explanatory to the dependent variables 
are extracted by the PLSR, and input into the new neural 
network, thus reducing the input dimension of the neural 
network, simplifying the network structure, and over- 
coming the influence of multicollinearity among the 
independent variables. 

(2) Using the PLSR-DNN coupled model to predict 
the net penetration rate of TBM, avoiding the over- 
fitting and insufficient-fitting problems faced by when 
the two methods are used alone, and the model demon- 
strates advantages of fast convergence speed, high stability 
and fitting accuracy. 

(3) The PLSR-DNN coupled model is used to predict 
the net penetration rate of TBM, and has achieved com- 
petent fitting accuracy and prediction result. The relative 
errors of fitting and prediction are below 10%, the average 
relative error of fitting is 2.96%, and the average relative 
error of prediction is 3.27%. The coupled model out- 
performed the prediction models established by PLSR 
and DNN methods, respectively, and also outperformed 
the BP neural network model and the support vector 
regression model. 

(4) In view of the complexity of geological conditions, 
the diversity of mechanical equipment and the random- 
ness of construction, it is very difficult to accurately 
predict the net penetration rate of TBM. The TBM net 
penetration rate prediction model established by the 
coupling method of PLSR and DNN is suitable for tunnel 
(cavern) projects with similar conditions as this research. 

The applicability of the prediction model under other 
conditions needs to be verified by more engineering 
examples, so that the model can be continuously imp- 
roved. 
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