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Numerical simulation of failure processes of heterogeneous rock specimens  
under assumption of invariant spherical stress during stress drop 
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1. College of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China 

2. Institute of Computational Mechanics, Liaoning Technical University, Fuxin, Liaoning 123000, China 

 

Abstract: Using the self-developed code based on the SPH (smoothed particle hydrodynamics) method, evolution of the shear bands 

and acoustic emission events during failure processes of heterogeneous rock specimens under plane strain uniaxial compression is 

studied. Based on the Mohr-Coulomb criterion with tensile truncation, the stress calculation method of the failed particle is deduced 

under the assumption that the spherical stress tensor is invariant during the stress drop. Numerical results show that the longitudinal 

stress-longitudinal strain curves of the specimens with lower homogeneous degrees demonstrate obvious strain hardening and strain 

softening stages; strain hardening stages of the specimens with higher homogeneous degrees become less obvious with an increase of 

the homogeneous degree, and post-peak behaviors of specimens are obviously brittle. Stress drops of particles with different 

cohesions are theoretically analyzed. Results show that stress drops of particles with higher cohesions are not necessarily larger than 

the particles with lower cohesions. Stress drops are not only related to the cohesions of the particles, but also to the stress states of the 

particles when they fail. Effects of homogeneous degree on distributions of failed particles are qualitatively analyzed. The analysis 

shows that as the homogeneous degree increases, failed particles are more likely to form a narrow shear band quickly penetrating the 

specimen, with almost no particles failed outside the shear band once the specimen is penetrated. Therefore, the number of final failed 

particles in the specimen is fewer with an increase of the homogeneous degree. 

Keywords: rock specimen; smoothed particle hydrodynamics (SPH); uniaxial compression; shear band; acoustic emission; stress 

drop 

 
1  Introduction 

The process of rock deformation and failure is 
essentially the process of initiation, expansion, interaction 
and penetration of defects in the rock[1]. In-depth research 
on the process of rock deformation and failure is not 
only conducive to the correct understanding of the 
mechanism of rock deformation and failure, but also 
has important significance for the prevention of some 
geological disasters. 

Brittle rocks are generally in an unstable state after 
the stress peak. It is difficult to describe the mechanical 
response using the classic strain softening model, 
instead the brittle plastic model is more suitable [24]. 

At present, numerical methods for simulating the 
deformation and failure process of rocks emerge in 
continuously. Typical methods include finite element 
method, finite difference method and discrete element 
method. In recent years, the meshless method has received 
great attention and is considered to be superior to the 
traditional mesh-based finite element method and finite 
difference method[5]. The mesh-free method avoids the 
mesh distortion and mesh reconstruction problems of 
the mesh method, and can effectively simulate large- 

deformation problems (such as landslides and debris 
flows). 

The SPH (Smooth Particle Hydrodynamics) method 
belongs to the mesh-free particle method[69]. It is a 
harmonious combination of the Lagrangian formula 
and the particle approximation method. It was first used 
for the simulation of astrophysics, and then used for 
simulation of solid mechanics and fluid mechanics 
phenomena [1015]. 

The Weibull distribution function is often used to 
characterize the heterogeneity of rocks [1620]. The SPH 
method has been used by some scholars to simulate 
the brittle failure process of heterogeneous rock samples 
under uniaxial compression. For example, Sun et al.[17] 
studied the influence of homogeneity on the failure 
modes, stressstrain curves and acoustic emissions of 
rock samples; Zhou et al. [1] also studied the influence 
of homogeneity on the failure modes and stressstrain 
curves of rock samples; Li et al.[21] studied the deformation 
characteristics and acoustic emission of rock samples 
with single defect. All of the above studies adopted the 
elasto-brittle-plastic constitutive model, but did not 
clearly clarify which specific stress dropping mode was 
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used, nor did them reveal the internal relationship between 
the homogeneity of the rock samples and the failure 
modes. Under the stress dropping mode with invariant 
spherical stress, some scholars have used other numerical 
methods to simulate the brittle failure process of rock 
samples under uniaxial compression and surrounding 
rocks in stope. For example, Pan et al. [2] used elastoplastic 
cellular automata to simulate the type I and type II 
curves of rock samples under uniaxial compression; 
Liu et al.[22] simulated the deformation and failure of 
surrounding rocks in stope using FLAC3D.  

Based on the Mohr-Coulomb criterion with tensile 
strength cut-off, this paper derives the calculation method 
of particle stresses under failure assuming invariant 
spherical stress during stress dropping. Under uniaxial 
compression in plane strain condition, the study of 
evolution of shear band and acoustic emission in the 
process of deformation and failure of heterogeneous 
rock samples was carried out. Theoretical analysis of 
the degree of stress dropping of particles with different 
cohesive forces was performed. In addition, the influ- 
ence of homogeneity on the distribution of damaged 
particles was qualitatively analysed. 

2  Introduction to SPH method 

Essentially, the SPH method is a numerical method 
for solving partial differential equations. In this method, 
the calculation model is discretized into a finite number 
of particles having independent masses and occupying 
independent spaces. The interaction between the particles 
is realized by a smooth kernel function (kernel function 
for short). The kernel function not only governs the 
form of the function approximation and the size of the 
particle compact support domain but also determines 
the approximation accuracy of the SPH method [23]. 
There is an interaction between the particle pairs in the 
kernel function support domain. 

Convert the continuous form of the kernel appro- 
ximation of the field function and its derivative of the 
SPH method into a discrete particle summation form: 
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where m  and   are the mass and density of the particle; 
kernel function ijW  ( )i jW h ,x x ; h  is the smooth 
length; and N is the total number of particles in the 
support domain of particle i. 

Use the SPH method to discretize the conservation 
equations of mass and momentum in the continuum 
mechanics, then 
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where superscripts   and   indicate the coordinate 
directions; when   , 1  ; when   , 0  ; 
v  is the speed; x is the coordinate; positive value of 
stress   represents in tension, otherwise, it represents 
in compression, refer to literature [5] for the detailed 
solving process; ij is Monaghan-type artificial viscosity 
used to solve non-physical numerical oscillations[11]. 

3  Calculation method of failure particle  
stress 

Brittle rock has the characteristic of rapid decrease 
in bearing capacity after reaching the yield strength, 
which is a characteristic that can be better reflected 
using the elasto-brittle-plastic constitutive model. The 
brittle stress drop in this constitutive model is a non- 
incremental mutation, that is, the migration of stress 
from the initial yield surface to the residual yield surface 
is completed instantaneously. 

Figure 1 schematically shows the stress drop on the 
plane of normal stress   and shear stress   under the 
assumption of invariant spherical stress. In this paper, 
the Mohr-Coulomb criterion with tensile cut-off is used 
as the failure criterion of particles. 

The shear failure of the particles is shown in Fig. 
1(a). The absolute value of G on the abscissa represents 
the theoretical tensile strength; 0 and 1 are the initial 
internal friction angle and the residual internal friction 
angle, respectively; and the value of point F on the vertical 
axis represents the cohesive force c. Assume that the 
horizontal stress, vertical stress and shear stress of a 
particle are x, y and xy, respectively. When the stress 
circle determined by points B(y, yx) and H(x, xy) is 
tangent to the initial yield surface at point A, the particles 
would undergo shear failure and the stress would undergo 
brittle drop. The horizontal stress, vertical stress and shear 
stress after dropping are set to be x  , y   and xy  , 
respectively, and the stress circle determined by the 
points B( y  , yx  ) and H( x  , xy  ) is tangent to the 
residual yield surface at point A’. The radii of the stress 
circles before and after the stress drop are set to be r0 
and r1, respectively, and both circles are centered at 
point C. It is assumed that there is no rotation of the 
stress principal axis during the stress dropping. In this 
way, points B, B’ and C would be positioned on the 
same line. The intersections of the stress circle and the 
abscissa before the particle stress drops are the first 
principal stress 1 and the third principal stress 3, 
respectively, with 1≥3 specified.  is the angle 
formed between y and 1. The stress drop coefficient 
is set as k= r1 /r0. The r0，r1， xy  , x   and y   are 
deduced to be 
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(a) Shear failure 

 
(b) Tensile failure 

Fig. 1  Schematic of stress drops under the assumption that 
the spherical stress is invariant 

 
The tensile failure of particles is shown in Fig.1(b). 

The tensile failure criterion is considered on the basis 
of Mohr-Coulomb criterion. Since Mohr-Coulomb criterion 
usually overestimates the actual tensile strength of the 
rock, it is necessary to reduce the theoretical tensile 
strength. According to Mohr-Coulomb criterion, the 
theoretical tensile strength of particles is Rt =c/tan 0 , 
and the actual tensile strength after reduction is Rt0= 
k1Rt, where k1 is the actual tensile strength coefficient 
(0<k1<1). When 3 +Rt0<0 is satisfied, the particle 
would undergo tensile failure; the residual tensile strength 
would be Rt1=k2Rt0, where k2 is the residual tensile 
strength coefficient (0< k2 <1). The identical symbols 
in Fig.1(b) and Fig.1(a) have the same physical meaning, 
and it is assumed that there is no rotation of the stress 
principal axis during the stress dropping. The radii of 
the stress circles before and after the particle stress fall are 
set to be 0r and 1r , respectively. The stress drop coefficient 
is set as 1 0k r r  . The 0r  and 1r  are deduced to be 
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Stress of particles after tensile damage could be 
obtained by substituting Eqs.(10) and (11) into Eqs. 
(7)(9). 

4  Calculation model, parameters and scheme 

The mechanical model of the rock sample under 
uniaxial compression is shown in Fig. 2(a). The width 
of the rock sample is 50 mm and the height is 100 mm. 
Displacement-control loading was performed at a speed 
of v=0.2 m/s on the upper boundary of the rock sample 
while normal constraints were imposed at the lower 
boundary. 
 

       
(a) Mechanical model   (b) Scheme 1(m=2.5)    (c) Scheme 2(m=3) 

    
(d) Scheme 3 (m=4)     (e) Scheme 4 (m=5) 

Fig. 2  Mechanical model of the uniaxial compressive rock 
specimen and distributions of c in rock specimens with 

different schemes (unit: MPa) 

 
The boundary cut-off in the SPH method will affect 

the calculation accuracy, so the processing of boundary 
conditions is particularly important. This paper used the 
mirror virtual particle method[24] to deal with the boundary 
cut-off problem: the mirror virtual particle and the cor- 
responding real particle have the same density, 
pressure and stress, and the speed of the mirror virtual 
particle is obtained by interpolating the corresponding real 
particle's speed. 

The rock sample was discretized into 50100=5 000 
uniformly distributed solid particles, and the distance 
between adjacent particles in the horizontal and vertical 
directions is 1 mm. The areal density of the rock is    
2 700 kg/m2, Poisson's ratio =0.3, elastic modulus E= 
25 GPa, 0 =30°, 1 =5°, k1=1/1.8, and k2=1/2. The 
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Weibull distribution function was used to describe the 
heterogeneity of the rock, and its expression is 

0

( ) 1 exp

m
x

p x
x

  
    
   
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where p(x) is the probability of variable x; x0 is the 
expectation of x; m is the shape parameter, also known 
as the degree of homogeneity. Assuming that the internal 
c of the rock sample obeys the Weibull distribution, 
the expected initial value is 33 MPa. This paper used the 
same probability distribution to describe the heterogeneity 
of rocks in different scenarios, that is, the probability 
of c at the same position of the rock sample in different 
scenarios is the same. 

In this paper, the kernel function proposed in literature 
[25] was used to eliminate the instability of compressive 
stress. The smooth length h was taken as 1.2 times the 
initial spacing of the particles. 

The values of m are 2.5, 3, 4 and 5, corresponding 
to Schemes 1 to 4, respectively. The distribution of c 
inside the rock sample in each scheme is shown in 
Figs. 2(b)2(e). It can be found that the smaller m is, 
the larger the maximum c inside the rock sample is 
and the smaller the minimum c is, that is, the more 
scattered the distribution of c inside the rock sample is; 
otherwise, these would not be observed. 

The calculation was carried out under the conditions 
of small deformation and plane strain, ignoring the 
influence of gravity. The Leap-Frog method was used 
to solve the time integration, where the time step was 
taken as 1.5×10−7 s, and the calculation time is the product 
of the time step and the number of time steps. A total 
of 9 000 time steps were calculated. 

5  Result analysis 

5.1 Rock sample deformation and failure and  
acoustic emission  

Figure 3 shows the longitudinal stresslongitudinal 
strain curves (referred to as a  a  curve) of the rock 
samples in each scheme. The points a1−f1 on the curve 
correspond to Figs. 4(a)4(f), respectively. a  is the 
absolute value of the averaged longitudinal stresses of 
the particles in the top two layers of the rock sample, 
and a  is the product of the calculation time and v 
divided by the height of the rock sample. It can be found 
that as m increases, the uniaxial compressive strength 

c  of the rock sample increases, and the corresponding 
strain c  also increases. In addition, when m is small 
(m=2.5), the rock sample has undergone obvious strain 
hardening stage and strain softening stage, the rock 
sample manifests ductile failure; when m is large (m= 
3−5), the strain hardening and strain softening process 
of the rock sample gradually becomes less obvious as 
m increases, and the rock sample manifests brittle failure. 

Due to space limitations, this article only analyses 

the failure process of the rock sample in Scheme 4 (see 
Fig. 4). Firstly, it can be found that: just before point a1, 
the rock sample has been, for the first time, observed 
with damaged particles (see Fig.4(a)); during the process 
from a1 to b1, multiple damage particles appeared, and 
a few damage particles have gathered together (see Fig. 
4(b)); then, in the process from b1 to c1( c ), a large 
number of damaged particles were connected together 
to form a shear fracture zone (shear zone) (see Fig.4(c)); 
during the process from c1 to d1, the stress of the rock 
sample dropped swiftly and the shear zone expanded 
rapidly (see Fig. 4(d)); finally, as the rock sample continued 
to deform, the shear zone quickly penetrated the rock 
sample, and the rock sample experienced brittle failure 
(see Figs. 4(e)−4(f)). To summarize, the shear zone is 
formed before the stress peak and rapidly expands 
until it penetrates the rock sample during the stress drop 
after the peak. 

 

 

Fig. 3  Longitudinal stresslongitudinal strain curves of 
rock specimens with different schemes  

 

     
(a) a =0.732×10−3   (b) a =1.590×10−3   (c) a =1.716×10−3 

     
(d) a =1.746×10−3   (e) a =1.776×10−3   (f) a =2.700×10−3 

Fig. 4  Failure process of the rock specimen with Scheme 4 
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For the convenience of description, this paper defines 
the shear zone that penetrates the rock sample as the 
primary shear zone, and the rest as secondary shear 
zones. Figure 5 shows the final ( a =2.710−3) failure 
mode of the rock samples in each scheme. It can be 
seen from Fig. 5: 

 

 
(a) Scheme 1    (b) Scheme 2    (c) Scheme 3    (d) Scheme 4 

Fig. 5  Final failure patterns of rock specimens with  
different schemes 

 

(1) The final failure mode of the rock sample in 
each scheme contains a straight and right-handed main 
shear zone, which is related to the same probability 
setting of c at the same position of the rock sample in 
different schemes. In addition, the final failure modes 
of the rock samples in Schemes 1 to 3 contain some 
secondary shear zones. 

(2) With the increase of m, the distribution of 
damaged particles changes from a dispersed type to a 
concentrated type, and the number of damaged particles 
outside the shear zone shows a decreasing trend. For 
example, when m=2.5, there is a relatively high number 
of damaged particles outside the shear zone and the 
distribution is more scattered; when m=5, the damage 
particles are mainly concentrated in the shear zone, 
and the number of damaged particles outside the shear 
zone is relatively small. 

In this paper, the destruction of each particle is 
regarded as an acoustic emission (AE) event, and the 
number of acoustic emission events per 20 time steps 
(referred to as acoustic emission rate) is counted. Figure 6 
shows the evolution of the acoustic emission rate of the 
rock samples and the cumulative number of acoustic 
emissions with a , where the circle dot on the a  curve 
with the cumulative number of acoustic emissions is c . 
In Schemes 1 to 4, before reaching c , with the increase 
of a , the cumulative number of acoustic emissions 
gradually increases, and a downward convex trend is 
showed by the cumulative number of acoustic emissions 
and the a  curve; after reaching c , with the continued 
increase of a , the cumulative number of acoustic emi- 
ssions in Scheme 1 gradually increases, the cumulative 
number of acoustic emissions and the a  curve shows 
a downward concave trend; the cumulative number of 

acoustic emissions in Scheme 2 firstly increases rapidly 
then relatively increases, while the cumulative number 
of acoustic emissions in Schemes 3 and 4 both firstly 
increases sharply and then slightly increases. As it is 
well-known that the acoustic emission mode[17, 26] has 
three main manifestations: swarm shock type, foreshock- 
mainshock-aftershock type, and mainshock type. Figure 6 
shows that: when m=2.5, the acoustic emission mode 
is the swarm shock type; when m=3, the acoustic emission 
mode is the foreshock-mainshock-aftershock type; when 
m=4 and m=5, the acoustic emission mode is the mainshock 
type. 

Table 1 provides the statistics of related quantities 
during the deformation and failure process of the rock 
samples in each scheme. It can be seen that with the 
increase of m, the maximum values of c , c  and the 
acoustic emission rate all increase, and the maximum 
values of the acoustic emission rate all appear in the 
post-peak stage. Prior to c , the cumulative number of 
acoustic emissions gradually decreases from 318 to 105 
with the increase of m, and the final cumulative number 
of acoustic emissions also decreases from 1 082 to 491 
with the increase of m. In other words, the greater the 
m, the less the final cumulative number of acoustic 
emissions of the rock sample. The reason will be 
explained in Section 5.3. 

It can also be found from Table 1 that before c , the 
cumulative number of AE in Scheme 2 accounts for the 
largest proportion of the final cumulative number of 
AE, followed by Scheme 1 and Scheme 3, and finally 
Scheme 4, the reasons for the phenomenon are related 
to the acoustic emission modes. 
5.2 Particle stress drop degree at different c 

In the numerical simulation of this paper, the rock 
samples have mainly undergone shear failure with few 
occurrences of tensile failure. Therefore, the latter will 
not be considered in the following analysis. In the foll- 
owing, the stress drop degree of particles after shear 
failure at different c is discussed theoretically under the 
assumption that the Mohr-Coulomb criterion and invariant 
spherical stress. For the convenience of analysis, take 
particle 1 and particle 2 as an example for discussion. 
Among them, the cohesive force of particle 1 (c1) is 
smaller than the cohesive force of particle 2 (c2), and both 
have the same 0  and 1 . Figure 7 shows a schematic 
diagram of the stress dropping from the initial yield 
surface to the residual yield surface of particle 1 and 
particle 2 on the  -  plane. The initial yield surfaces 
of particle 1 and particle 2 are 1( ) 0F    and 2 ( ) 0F   , 
respectively and the residual yield surfaces are 1( ) 0f    
and 2 ( ) 0f   , respectively; the centres of the stress 
circles are points O1 and O2, and the abscissas are 
 1 3 / 2  and  1 3 / 2   , respectively.     
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(a) Scheme 1（m=2.5）                                            (b) Scheme 2（m=3） 

     
(c) Scheme 3（m=4）                                          (d) Scheme 4（m=5） 

Fig. 6  The evolution of the acoustic emission rates and acoustic emission accumulations of rock specimens  
with a for different schemes 

 
Table 1  Statistics of related quantities during deformation and failure processes of rock specimens for different schemes 

Scheme c /MPa c /10−3 
Maximum value 

of AE rate 
Ratio of a to c corresponding 

to the maximum AE rate 
Cumulative number 

of AE prior to c

Final cumulative 
number of acoustic 

emission 

Ratio of cumulative number 
of AE before c to final  

cumulative number of AE /%

1(m=2.5) 29.08 1.266 19 1.076 318 1 082 29.39 

2(m=3) 32.14 1.332 20 1.153 247 712 34.69 

3(m=4) 37.92 1.494 31 1.072 153 574 26.66 

4(m=5) 44.99 1.716 33 1.031 123 491 25.05 

 

 
Fig. 7  Stress drops of particles with different c 

 

The radii of the stress circles when the particle 
reaches the failure condition and after the failure (i.e. 
after stress drop) are set to as r0 and r1, respectively. In 
order to describe the degree of particle stress drop, the 
difference between the radii of the stress circles before 
and after the particle stress drop is defined as 0 1d r r  , 
and the greater the d, the greater the degree of the stress 

drop. 
The stress drops of particle 1 and particle 2 are 

1 1 1 11 O D Ed O and 2 2 2 22 O D Ed O , respectively 
with the difference between the two as 21 2 1d d d  . 
From the geometric relationship in Fig. 7, there is 

 1 3 1 3 2 1
21 0 1

0

sin sin
2 2 tan

c c
d
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 


    

    
 

  

                                       （13） 
When 21 0d  , the stress drop of particle 2 is 

greater than that of particle 1. Otherwise, it is not. 
According to the above, 2 1c c and 0 1  . Therefore, 
expressions  2 1 0tanc c  and 0 1sin sin   on the right- 
hand-side of Eq.(13) are both greater than 0. There are 
several possibilities for the sign of 21d : (1) When point 
O2 is on the right side of the point O1, or when point 
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O2 coincides with point O1, then  1 3 2     1 3  / 
2≥0， 21 0d  . (2) When point O2 is on the left side of 
the point O1 and satisfies  1 3 2     1 3 2  + 
 2 1 0tan 0c c   , then 21 0d  . (3) When point O2 is 
on the left of point O1 and satisfies  1 3 2    
 1 3 2  +  2 1 0tan 0c c   , then 21 0d  . It can be 
seen that the degree of stress drop after particle failure 
when c is high is not necessarily greater than that when 
c is low; the degree of stress drop is not only related to 
the c of the particle, but also to the stress state ( 1 , 3 , 

1  and 3 ) when the particle is damaged. The above 
results can explain to a certain extent the pheno- 
menon of greater stress drop after particle failure at 
high c is larger than that at low c. 
5.3 Influence of m on particle distribution of rock  
sample failure 

Due to stress transfer, the destruction of a particle 
will cause stress concentration or even destruction of 
surrounding particles. For analysis simplification, the 
uniaxial compression is taken as an example, the repr- 
esentative particle i and its neighbouring particles n 
and k are used for discussion. Figure 8 shows a schematic 
diagram of the stress redistribution of surrounding particles 
caused by a certain particle destruction when m is constant, 
where the abscissa is the particle serial number, the 
ordinate is 1  of the particle (first principal stress), and 

s  is the uniaxial compressive strength of the particle 
with the expected value being represented by s . 
 

 
Fig. 8  Schematic of the stress redistribution of surrounding 

particles caused by a failed particle 
 

As shown in Fig.8, before the particles are destroyed, 

1  of particles i, n, and k are i , n  and k , resp- 
ectively. Since the three are very close with each other, 
they can basically be considered the same. Assuming 
that the uniaxial compressive strength si  of particle i 
is the smallest, particle i will be destroyed first. After 
the particle i is destroyed, the stresses of the particles i, 
n and k are redistributed and become i , n   and k  , 
respectively. The specific analysis is as follows: when 

i  reaches si , the particle i would be destroyed and 
its 1  would drop from i  to the residual stress i , 
and the stress drop i i   would be borne by particles 
n and k. Assuming that particles n and k each bear half 
of the stress drop, i.e.   2i i  , the 1  of particles 
n and k would suddenly rise from i  to  3 2i i  , 

in other words, n  and k   both equal to  3 2i i  . 
When the s  of particle n or k is equal or smaller, 
that is,  s 3 2i i  ≤ , the particle n or k would also 
be destroyed. Therefore, destruction of the particles n 
and k mainly depends on their s  and i i   .  

When m is large, the fluctuation of s  of the particle 
is small; when m is small, the fluctuation is large. Assum- 
ing the same s  of rock samples when m is different, 
and the residual stress of each particle after failure is 

i , so that the larger m is, the smaller the absolute value 
of the difference of s  between particle i and particles 
n and k, and the larger the i i   . Therefore, the 
stress is more concentrated in the adjacent particles, 
the more likely for them to be destroyed. In this way, the 
distribution of damaged particles is more likely to form 
a narrow band with a faster expansion of the shear 
zone. It should also be noted that once the shear zone 
penetrates the rock sample, the entire rock sample 
would undergo stress release, and the particles outside 
the shear band would almost no longer be destroyed 
after that. Therefore, the final cumulative number of 
damaged particles of the rock sample would be lower. 
In addition, the smaller the m is, the larger the number 
of particles with smaller s  is and the more scattered 
they are distributed, so that the more easily these 
particles would be destroyed, resulting in the more 
dispersed distribution of the final damaged particles in 
the rock sample. The above analysis supports the 
simulation results in Section 5.1. 

6  Conclusions 

(1) Based on the Mohr-Coulomb criterion with tensile 
cut-off, when the stress drops under the assumption of 
invariant spherical stress, a calculation method of dam- 
aged particle stress is deduced. On this basis, the calculation 
program based on SPH method is developed independently. 

(2) The SPH method was used to simulate the de- 
formation and failure process of heterogeneous rock 
samples under plane strain uniaxial compression. The 
results show that when the homogeneity is small, the 
longitudinal stress−longitudinal strain curve of the rock 
sample presents an obvious strain hardening stage and 
a strain softening stage; when the homogeneity is large, 
the strain of the rock sample increases with the increase 
of homogeneity. The hardening stage becomes less distinct, 
and the post-peak behavior is obviously brittle. 

(3) Under the Mohr-Coulomb failure criterion and 
the assumption of invariant spherical stress, the theoretical 
analysis of the degree of stress drop when the cohesive 
force of particles is different is provided. It shows that 
the degree of post-failure stress drop when the cohesive 
force is high is not necessarily greater than that when 
the cohesive force is low. In addition, the degree of stress 
drop is not only related to the cohesion of the particles, 
but also related to the stress state when the particles are 

O 

1  

i n k

i   

i  

s  

s  

n  

n   

k  

k   
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damaged. 
(4) Under the assumption that the expected value 

of the uniaxial compressive strength of the particles 
and the residual compressive strength are the same, 
the influence of homogeneity on the distribution of 
damaged particles is qualitatively analyzed. The result 
shows that the greater the degree of homogeneity, the 
greater the degree of stress drop of the damaged particles, 
the easier it is for the surrounding particles to be damaged, 
the more accessible it is for the damaged particles to 
form a narrow shear zone, and the faster the shear zone 
penetrates the rock sample. The particles outside of the 
shear zone after the rock sample is penetrated would 
no longer be damaged. Therefore, the number of final 
damaged particles of the rock sample is smaller. 
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