
Rock and Soil Mechanics Rock and Soil Mechanics 

Volume 41 Issue 8 Article 2 

1-22-2021 

Elastoplastic solution for a deep-buried tunnel considering Elastoplastic solution for a deep-buried tunnel considering 

swelling stress and dilatancy swelling stress and dilatancy 

You-liang CHEN 
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen 52064, Germany 

Geng-yun LIU 
Department of Civil Engineering, School of Environment and Architecture, University of Shanghai for 
Science and Technology, Shanghai 200093, China 

Xi DU 
School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, Australia 

Azzam RAFIG 
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen 52064, Germany 

See next page for additional authors 

Follow this and additional works at: https://rocksoilmech.researchcommons.org/journal 

 Part of the Geotechnical Engineering Commons 

Custom Citation Custom Citation 
CHEN You-liang, LIU Geng-yun, DU Xi, RAFIG Azzam, WU Dong-peng, . Elastoplastic solution for a deep-
buried tunnel considering swelling stress and dilatancy[J]. Rock and Soil Mechanics, 2020, 41(8): 
2525-2535. 

This Article is brought to you for free and open access by Rock and Soil Mechanics. It has been accepted for 
inclusion in Rock and Soil Mechanics by an authorized editor of Rock and Soil Mechanics. 

https://rocksoilmech.researchcommons.org/journal
https://rocksoilmech.researchcommons.org/journal/vol41
https://rocksoilmech.researchcommons.org/journal/vol41/iss8
https://rocksoilmech.researchcommons.org/journal/vol41/iss8/2
https://rocksoilmech.researchcommons.org/journal?utm_source=rocksoilmech.researchcommons.org%2Fjournal%2Fvol41%2Fiss8%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/255?utm_source=rocksoilmech.researchcommons.org%2Fjournal%2Fvol41%2Fiss8%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Elastoplastic solution for a deep-buried tunnel considering swelling stress and Elastoplastic solution for a deep-buried tunnel considering swelling stress and 
dilatancy dilatancy 

Authors Authors 
You-liang CHEN, Geng-yun LIU, Xi DU, Azzam RAFIG, and Dong-peng WU 

This article is available in Rock and Soil Mechanics: https://rocksoilmech.researchcommons.org/journal/vol41/
iss8/2 

https://rocksoilmech.researchcommons.org/journal/vol41/iss8/2
https://rocksoilmech.researchcommons.org/journal/vol41/iss8/2


Rock and Soil Mechanics 2020 41(8): 25252535                                                 ISSN 10007598 
https: //doi.org/10.16285/j.rsm.2019.6799                                                     rocksoilmech.researchcommons.org/journal 

 
Received: 21 October 2019          Revised: 14 March 2020 
This work was supported by the National Natural Science Foundation of China (10872133) and the Key Projects in Soft Science Research in Shanghai 
(18692106100). 
First author: CHEN You-liang, male, born in 1966, PhD, Professor, PhD supervisor, mainly engaged in research on tunnel and underground engineering, energy 
and environmental geotechnical engineering. E-mail：chenyouliang2001@163.com 
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Abstract: This study focuses on tunneling under challenging conditions, particularly with regard to the stress distribution and 

deformation in the humidity stress field. The swelling phenomenon during tunneling has been treated as a coupled humidity– 

mechanics process, where the humidity diffusion and stress dilatancy are considered together to obtain stress and deformation fields 

for tunnels crossing the formations with high swelling potential. A solution to the nonstationary process of humidity transfer has been 

derived according to Fick’s second law. The swelling pressure has been included in the form of body force, and a non-associated flow 

rule has been adopted to obtain the analytical solutions. Next, considering the examples of rock tunnels that are excavated in two 

different quality rock mass, we have investigated the impact factors on stress and deformation in swelling surrounding rock. 

Numerical results show that the inclusion of the swelling stress increases the plastic zone of the surrounding rock and the maximum 

stress at the elastic-plastic boundary, whereas the stress convergence has been decreased. After a certain increase in swelling pressure, 

a tensile stress zone appears in the plastic circle. The deformation of surrounding rock caused by swelling pressure can be much more 

significant than that caused by in-situ stress. Furthermore, the effect of dilatancy on the deformation rock cannot be negligible 

especially when the support resistance is small. This paper presents a new possible workflow to quickly evaluate the elastic-plastic 

stress and deformation of tunnels in swelling surrounding rock. 

Keywords: deep-buried tunnel; humidity stress field; swelling stress; dilatancy; elastoplastic solution 
 

1  Introduction 

Swelling soft rock expands in volume and changes 
its mechanical properties when being exposed to water. 
This property can cause serious damage to hydraulic 
structures, underground chambers, as well as buildings 
built in this type of rock mass[1–2]. The problem can be 
severe especially when considering a tunnel passes 
through a deep-buried soft rock layer containing potential 
swelling clay minerals. The excavation process prompts 
the rapid release of the original rock energy storage, 
and the result is two-fold. On the one hand, it causes 
the redistribution of the stress of the surrounding rock, 
and the change of the surrounding rock further induces 
the swelling effect[3]. On the other hand, the strain of 
swelling can then develop its direction and space due 
to the appearance of the unloading surface. As the water 
from excavation continues to penetrate and diffuse into 
the surrounding rock, the inward displacement of the 
tunnel wall and the floor swelling become more sig- 
nificant in the high-potential swelling area. If not 
maintained in time, the surrounding rock and support 
of the tunnel may be severly deformed and damaged. 

According to the definition of The Commission on 
Swelling Rock of the International Society for Rock 
Mechanics, swelling soft rock refers to the type of 
rock with low strength and containing highly swelling 

clay minerals, which undergoes significant deformation 
under low external stress (<25 MPa). Swelling soft 
rocks are widely distributed in China, and the related 
studies have been increasingly attractive. Chen et al. [3] 
reviewed the problems of swelling rock and regarded 
the topic as a crucial one in soft rock mechanics and 
engineering development. The research on the swelling 
of soft rock in contact with water has a history of many 
years. The swelling constitutive model of swelling rock 
shows the stress–strain relationship during the swelling 
of rock in contact with water, which is fundamental for 
studying the mechanical response of tunnel excavation 
in the swelling host rock. Huder et al.[4] first proposed 
a linear relationship between the axial strain and the 
logarithm of the swelling pressure. At present, the widely 
applied theories are based on specific experimental 
swelling models. Typical examples are given by Gysel's 
one-dimensional swelling modelling thoery[5–6] and 
Wittke's three-dimensional swelling modelling theory [7]. 
Based on these, Zuo et al.[8], Liu et al.[9] and Ren et 
al.[10], all have derived and demonstrated functions 
between swelling strain and stress based on swelling 
experiments.  

However, the above swelling models are all derived 
by fitting to experimental data. The underlying assump- 
tions include, for example, stress and strain obey a 
semilogarithmic relationship; water absorption and time 
obey an exponential relationship; and swelling force 
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and water absorption obey an exponential relationship. 
They all have certain practical significance as simple 
mathematical models, but when considering constitutive 
models, they lack the foundation in physics. Moreover, 
the above theories are also limited by experiment. 
They assume that the stress field in the surrounding 
rock mass has no effect on the swelling part of the 
rock mass, which can be inconsistent with reality. 

In fact, the extent and the significance of the 
water-contacted part of the rock mass can be variable. 
The swelling and softening of the rock mass after 
encoun-tering water will cause changes in the stress 
and strain of the entire rock mass, and the stress field 
in the surrounding rock mass will also react against the 
water-contacted part of the rock mass. Based on this, 
Miao et al.[11–12] proposed a preliminary framework for 
the theory of humidity stress field, which actually 
considered the changes in stress and strain caused by 
the internal and external constraints of the swelling 
surrounding rock. The theory has been verified and 
applied as shown by many researchers in theory, experi- 
ments and simulations. Bai et al.[13] showed a rigorous 
proof of the humidity stress field theory, and analyzed 
the required conditions and mechanical significance of 
the theory. Zhu et al.[14] proposed an elastoplastic 
constitutive model of swelling rock based on the theory 
of humidity stress field, considering the changes in the 
elastic modulus, Poisson's ratio and yield limit of 
swelling rock caused by the change of water content. 
Ji et al.[15–17] presented the tests of lime mudstone with 
free swelling and verified that the results are consistent 
with the humidity field theory. Wang et al.[18] proposed 
an elastoplastic con-stitutive model of the humidity 
stress field of swelling rock based on the incremental 
theory and the swelling deformation mechanism, and 
showed the secondary development of the constitutive 
model based on FLAC 3D. Zhang et al. [19] assumed a 
hyperbolic relationship between swelling pressure and 
water content , and explained the physical meaning of 
the humidity swelling coefficient: it reflects the expansion 
characteristics of different swelling rocks after physical 
and chemical reactions caused by water seepage, and 
is also a measure of the potential of closed strain deve- 
lopment. These studies have improved the humidity 
stress field theory to a certain extent, and also form the 
fundamentals for applying the theory to tunnel excavation 
in high-potential swelling areas. 

In recent years, some researchers have derived the 
analytical solutions for tunnel excavation in weak swelling 
surrounding rock under the impact of humidity based on 
the theory of humidity stress field. Miao et al. [20–21] 
assumed that the circular chamber is located in an 
infinite space, and is subjected to a uniform ground 
stress field, based on which they derived the stress 
distribution of the circular chamber considering both 
water and ground stress. Lu et al.[22] aimed at the 
problem of water shrinkage of boreholes through swelling 
rock in coal mines, and introduced a humidity correction 
parameter. They derive an analytical solution for the 
radial displacement of the borehole considering the 

water softening and swelling characteristics of sur- 
rounding rock based on the humidity stress field theory. 
Zhang et al.[19] derived a viscoelastic-plastic creep solution 
of swelling rock tunnels based on the theory of humidity 
stress field. However, they made a few simplifications 
through the derivation. For example, the humidity of 
the surrounding rock was assumed to be constant and 
the swelling pressure did not affect the stress distribu- 
tion of the surrounding rock. The boundary condition of 
the stress field was simply the swelling stress plus the 
initial ground stress of the surrounding rock. In order 
to study the displacement of the tunnel surrounding 
rock of anhydrite under the swelling action, Ren et 
al.[23] proposed a tunnel elastic-expansion analytical model 
based on the humidity stress field theory, considering the 
time-dependent swelling of anhydrite. They discussed 
two working conditions: 1) the surrounding rock absorbs 
water uniformly; and 2) the water absorption of the 
surrounding rock decreases with the increase of the 
distance from the open surface. The analytical solution 
of the stress field and displacement field of the tunnel 
surrounding rock was then derived accordingly. However, 
the studies [20–23] all adopt the assumptions that the 
distribution law of the humidity field satisfies ( )W r   

max 0( )w w  0 /R r  or ( )W r  max 0( )w w  2
0 /R 2r , 

which make Ren’s work controversial and lack 
support in theory. It also has certain limitations. The 
review of literatures reveals that a key problem has not 
been fully solved to apply the humidity stress field 
theory to analyze the deformation of swelling rock 
tunnels. That is, the humidity distribution of the surr- 
ounding rock has not yet been solved analytically 
when it encounters water.  

Chen[24] discussed the main reasons for the defor- 
mation and damage of surrounding rock when tunnels 
were excavated in swelling rock. The rock swells with 
water and expands under deviatoric stress, which forms a 
mutual effect and leads to a coupled, longterm deve- 
lopment. This paper focuses on the deep-buried tunnel 
with swelling surrounding rock. We derive the 
analytical solution for the humidity distribution in the 
deep-buried swelling surrounding rock. Based on the 
Mohr-Coulomb strength criterion, we consider the 
effect of the swelling stress and dilatancy of the sur- 
rounding rock, and show the stress and deformation of 
surrounding rock after tunnel excavation with the 
proposed humidity field. We then investigate and 
discuss the impact of swelling stress and dilatancy on 
the stress and displacement of the surrounding rock. 

2  Elastoplastic solution considering swelling 
stress 

Considering deep-buried circular tunnels, the sur- 
rounding rock can be assumed to satisfy the hydrostatic 
condition if the tunnel is deep enough. The rock mass 
is assumed to be uniform, continuous and isotropic. 
The humidity distribution inside the rock mass is 
assumed to be axisymmetric. Through our derivation 
the com-pressive stress is positive and the tensile stress is 
negative. The model configuration is illustrated in Fig.1, 
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where 0R  and pR  denote the radius of the tunnel 
and the radius of the plastic zone, respectively. The 
hydrostatic pressure is 0p , and the support resistance 
is ip . 

 

 
Fig. 1  Circular opening in an infinite medium 

 
For the plane strain problem, the balance equation 

in polar coordinates is 
d

( ) 0
d

r
rr rf

r  
                        （1） 

where f  is the body force, and in this case it is the 
swelling stress regarding to the swelling rock tunnel; 

r  and   are the radial and tangential stress of the 
surrounding rock, respectively; r is the distance from a 
point in the surrounding rock to the center of the 
tunnel. Previous studies [15, 18] have shown the 
swelling stress of swelling rock can be derived as 

s 1 2

E
f P w

v   


                       （2） 

where sP  is the swelling stress;   is the humidity 
swelling coefficient. However, the change of water 
content Δw at different positions in the swelling 
surrounding rock can be spatially dependent, and we 
treat it as a function of space and time, instead of a 
fixed value. Therefore, Eq. (1) can be modified to  

d d ( )
0

d d 1 2
rr E W r

r r r v
        

            （3） 

where ( )W r  is the function denoting the change of 
humidity with the radius of the swelling surrounding 
rock. The value of ( )W r  is the difference of water 
content between the current status and the initial 
status. 
2.1 Elastic zone 

The swelling stress satisfies the physical relations 
of 
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
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     （4） 

and the swelling stress also stratifies the geometric 
relations of 

d

dr

u

r
u

r





 




                                 （5） 

Combining Eqs. (1) – (5), we have 
2

2 2

2

2 2

d 1 d 2 (2 ) d 1 d

d d (1 )(1 2 ) d d

d 1 2 d

(1 ) d (1 )(1 2 ) d
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u E v v v v
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  

     

（6）

 

where  
d d d

d d d

E E W

r W r
 , and 

d d d

d d d

v v W

r W r
 . 

Equation (6) is the governing equation to solve the 
problem based on displacement, which has included 
the softening effect of swelling rock in contact with 
water. However, it is not straightforward to obtain an 
explicit solution . To reduce the complexity in math, 
we assume that the mechanical properties of swelling 
rock do not change within a certain range of water 
content, i.e., E and   do not change with w, and   
does not change with w. Therefore, Eq. (6) can be 
simplified as 

2

2 2

d 1 d 2(1 ) d ( )
0

d d 1 d

u u u v W r

r r r r v r


   


         （7） 

that is 

d 1 d 2(1 ) d ( )
( )

d d 1 d

v W r
ru

r r r v r
     

             （8） 

with the boundary conditions defined as 

0 0

p p

i max

Rp Rp

0 0 

r r R r R

r r R r R
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p w w

w w

p w w


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 
  
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, 

, 

, 

                 （9） 

where 0w  is the initial water content. We assume the 
water content of the surrounding rock has the largest at 
the tunnel wall, so maxw  is the water content at r   

0R . 
pR  is the stress at the elastic-plastic interface; 

and 
pRw  is the water content of the surrounding rock. 

Integrate both sides of Eq. (8), it has 

p

e 1
2

2 (1 )
( ) d

(1 )
r

R

C v
u C r W r r r

r v r

 
  

           （10） 

whrer 1C  and 2C  are the constants obtained from 
integration.  

Substitute the boundary conditions (Eq.(9)) into 
Eq. (10), the stress of surrounding rock in the elastic 
zone can be solved as  

p

p

2
p Rpe
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（11） 

Rp 

p0 

p0 

r→∞ Plastic zone 

Elastic zone 

pi 

R0 
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2.2 Plastic zone 
Considering the plastic zone (where 0 pR r R≤ ≤ ), 

combining the balance Eq. (3) and Mohr-Coulomb 
strength criterion 

p

p

cot 1 sin

cot 1 sin
r c

c

  
  

 


 
                    （12） 

it gives 

   
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r

E W r c

r r v r r
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 

  
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（13） 
Solve the differential equation and substitute the 

boundary conditions in, the stress of the surrounding 
rock in plastic zone can be derived as  

0
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

  
  


      （14） 

Next is to determine the displacement distribution 
in the plastic zone. We assume the elastic strain is 
relatively small compared to the plastic strain, and the 
plastic strain follows the non-associated flow rule. We 
also assume that the radial plastic strain and the hoop 
strain satisfy the relation[19, 25] 

p p 0r                                 （15） 

where p
r  and p

  are the radial strain and the hoop 
strain in the plastic zone, respectively;   is the 
dilatancy coefficient, and  1 means that the plastic 
volume strain is 0. The dilatancy coefficient   and 
the dilatancy angle   satisfy 

1 sin

1 sin








                             （16） 

Substitue the geometric relationship (Eq.(5)) in, it 
gives 

p p

0
u u

r r


 


                           （17） 

According to the deformation compatibility condtions 
at the elastic-plastic interface, the radial displacement 

pu  of the surrounding rock in the plastic zone can be 
solved as 

1
p Rpp

0 Rp( )
2 1

R E w
u p

Gr v








  
    

           （18） 

where Rpw  is the value of function ( )W r  at the 
elastic-plastic interface, that is, 

p p 0( ) r R RW r w w   . 
Combining the two equations in Eq. (11) yields 

e e
0

2 ( )
2

1 1 2r

v E W r
p
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   

 
               （19） 

According to the continuity of stress, at the 
elastic-plastic interface ( pr R ) it should satisfy the 
relation 

Rpp p
0

2
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1 1 2r

E wv
p

v v
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 
               （20） 

By combining Eqs. (20) and (12), the stress at the 
elastic-plastic interface ( pr R ) in the surrounding 
rock can be solved as 
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（21） 
Substitute pr R  into Eq. (14), and with the use 

of Eq. (21), the relation between the support resistance 

ip  and the radius of the plastic zone pR  can be 
solved as  
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and the radius of the plastic zone of the surrounding 
rock is solved as  
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 （23） 

Equations (22) and (23) show the relationship 
between the support resistance ip  and the radius of 
the plastic zone pR  when the swelling stress has been 
included. When the effect of swelling stress is excluded, 
Eqs. (22) and (23) then becomes the modified Fenner 
formula [26]. Substituting the plastic displacement 

0Ru  
when 0r R  into Eq.(22), the supporting resistance 

ip  and the plastic displacement 
0Ru  of the surround- 

ing rock can be related as 

p

2sin
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where 

p

p

0

11

R

R

E w

v
p









                       （25） 
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Equations (11), (14), (18), (24) and (25) show the 
stress and displacement distribution of the elastic and 
plastic zone of the swelling rock surrounding a tunnel, 
as well as the response from the surrounding rock. 
However, to obtain the complete explicit solution, the 
expression of the humidity field ( )W r  needs to be 
found. 

3  Solution to the humidity field 

We consider the model configuration as a cylindrical 
array with an inner radius of 0R  and an outer radius of 

010R R  . We define the humidity field as the sum 
of the instantaneous humidity of all the points in the 
internal space of the model[27]. For the unsteady humidity 
field, it is a function of space and time, and it can be 
expressed as ( , )w r t . To extend the use of our solution, 
we consider a general form of humidity through the 
derivation. The humidity can be defined by physical 
quantities such as water content, water head, pore 
pressure and even concentration. Nevertheless, the unit 
needs to be standardized before use.  

The initial condition and boundary conditions are 
given as  

0

1 0 max 0

1 0

( ,0)
( , )
( , )

w r w
w R t w w
w R t w




 
  
 

                   （26） 

where the scale factor ≥  0. When    1, it means 
that the humidity of the cylinder increases from the 
inside to the outside. We mainly consider the case 
where    1, because it corresponds to the process 
where humidity transfers from the inside to the outside 
of the cylinder model.  

For the plane strain problem, the unsteady state of 
humidity transfer can be expressed as 

2

w 2

1w w w
k

t r r r

   
     

                    （27） 

where wk is the hydraulic conductivity of the swelling 
rock. 

To simplify the calculation, the variables are 
transformed to be dimensionless:  

2

w

;  
a

t r a
k
                             （28） 

which yields 
2

2

1w w w

   
  

 
  

                        （29） 

To derive the analytical solutions accurately, Eqs. 
(26) and (29) are decomposed into 

1 2( , ) ( ) ( , )w w w                        （30） 

That is  
2

1 1
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                       （31） 
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                    （32） 

where a  1; and b 0/R R  .  
The solution to Eq. (31) is  

b a a b
1

a b

ln( / ) ln( / )
( )

ln( / )

w w
w

   
 


           （33） 

Solving Eq. (32) by the separation of variables, it 
yields 

2

2
2

2

( , ) ( ) ( )

1 1 1
constn

w R T

T R R
k

T R

   
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              

      （34） 

By integrating both sides of Eq. (34), the function 
of T and R can be derived as  

2

0 0

( ) e

( ) ( ) ( )

nkT A

R BJ k CY k


  

  


  
                （35） 

where 0J  and 0Y  are the first and second zero-order 
Bessel functions, respectively.  

The general solution of Eq. (34) for any nk  is 

2
2 a 0 0( , ) [ ( ) ( )] en n nw BJ k CY k k           （36） 

Besides, it satisfies 2 a( , ) 0w    , and 2 b( , )w     
0, which leads to  

0 a 0 b 0 b 0 a( ) ( ) ( ) ( ) 0n n n nJ k Y k J k Y k           （37） 

Let ank x   0, and b b a( / 1)nk x       , 
Eq. (37) is equivalent to  

0 0 0 0( ) ( ) ( ) ( ) 0J x Y x J x Y x                 （38） 

We define  

0 0 0 0( ) ( ) ( ) ( ) ( )f x J x Y x J x Y x              （39） 

Based on the S-L theory regarding to the eigenvalue 
problem [28], there are infinite zero-crossing points nx  
( 1,2,3,...n  ), and the eigenvalues can be solved as  

2

2

a

,( 1,2,3,...)n
n

x
k n


 

  
 

                  （40） 

Therefore it gives 

0 a 0 a 0 0 0 a( / ) ( / ) ( ) ( ) ( / )n n n n nR x J x Y x J x Y x        

（41） 
By superposition, the general solution of 2w  is 

derived as 

 2 2
2 0 a a

1
( , ) ( )expn n n

n
w A R x x     




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Combining Eqs. (42), (30) and (33), it gives 
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where  
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
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Therefore, after encountering water, the humidity 
distribution in the swelling surrounding rock is solved as 

 
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（45） 
where 

0 0 0 0 0
a a a

( ) ( )n n n
n n

x x x
R J Y x J x Y  

  
     

      
     

（46） 

4  Numerical demonstration and analysis 

4.1 Numerical demonstration 
To demonstrate the correctness of the theory 

derived in this paper, we compare our solution to the 
ones from previous studies. 
4.1.1 Comparison of the humidity field  

We choose the hydraulic conductivity of swelling 
rock to be 2 1010 cm/s [29–30], the maximum water 
content to be 15%, and the initial water content to be 
2%. The humidity distribution in the surrounding rock 
is obtained from Eq. (45), and shown in Fig. 2. 
 

 
 (a) Distribution of unsteady humidity 

 

 
      (b) Comparison with other existing solutions 

Fig. 2  Humidity distribution in the surrounding rock 

Figure 2 shows the distribution of the humidity field 
in the swelling surrounding rock. With the increase of 
time, the humidity in the surrounding rock also increases. 
Centered on the tunnel, the humidity diffuses con- 
tinuously into the surrounding rock. For a certain 
period of time, the water content of the surrounding 
rock ( )W r  shows approximately a negative exponential 
relation with the radius r, which means the assump- 
tions in literatures [20–23] are reliable to some extent. 
However, as shown in Fig. 2(b), the assumptions that 

( )W r  and r satisfying the relations max( ) (W r w   

0 0) /w R r  or ( )W r  2
max 0 0( ) /w w R 2r  have obviously 

underestimated the distribution of humidity in the 
surrounding rock. 
4.1.2 Comparison of displacement 

Previous work[31] applies the Mohr-Coulomb strength 
criterion and the non-associated plastic flow rule to 
solve the displacement for the elasto-plastic deformation 
of axisymmetric tunnels. However, the swelling stress 
and dilatancy effects have not been considered, which 
can been seen as a special case ( ( )W r  0,  1) of 
the solution derived in this paper. We use the 
following parameters for the computational model: the 
hydrostatic pressure is 0p  10 MPa; roadway radius is 

0R  1.0 m; no support is included; elastic modulus of 
surrounding rock is E  1 GPa; Poisson’s ratio is 
v  0.3; uniaxial compressive strength of surrounding 
rock is c  6 MPa; and the internal friction angle is 
  30° . 

According to the solution given in literature [31], 
the radius of the plastic zone is calculated as 1.47 m, 
which is consistent with our result ( pR  1.47 m) when 
the swelling stress effect has been turned off. Figure 3 
shows the distribution of displacement in the plastic 
zone of surrounding rock under different dilatancy 
angles  of 0°, 10°, 20°, and 30°, respectively. 
Without the inclusion of swelling stress, the results in 
this paper are mostly consistent with the results given 
in [31], which further demonstrates the correctness of 
our solution. 
4.2 Numerical examples and analysis 

The theory derived in this paper includes the effect 
of swelling stress, and compares the results with the 
ones where swelling stress is absent. The comparison 
demonstrates in particular the importance of swelling 
stress. In this case we use the water content w to 
characterize the humidity of the surrounding rock. It is 
worth pointing out that, according to the swelling 
stress as given in Eq.(2), the strength of swelling stress 
depends on the change of the water content of the 
surrounding rock. That is, it is the current water 
content and the initial water content of the surrounding 
rock that both affect the stress. Based on Eq. (45), it 
only needs the knowledge of the initial water content 

0w  and the maximum water content maxw  to determine 
the humidity distribution in the surrounding rock. 
Substituing the water content into the formula of the 
humidity field, the stress in the surrounding rock can 
therefore be obtained. 
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4.2.1 Numerical example 1 
The first model considers a deep-buried tunnel 

with swelling surrounding rock that has the following 
parameters: the hydrostatic pressure is 0p  1.5 MPa; 
the supporting resistance is ip  0.60 MPa; the radius 
of tunnel excavation is 0R  6 m; the surrounding rock 
 

has an elastic modulus of E  1 GPa, with a Poisson’s 
ratio of v  0.35 and a cohesive force of c  0.3 MPa. 
The friction angle is   20°. The humidity swelling 
coefficient of the surrounding rock is   0.03. The 
maximum water content maxw  is 3%, and the initial 
water content 0w  is 2%.  

 
Fig. 3  Distribution of displacements in the plastic region of tunnel with different ψ 

 

 
Fig. 4  Plots of stress of surrounding rock with (blue) and 

without (red) considering swelling stress 

 
Figure 4 plots the variation of stress with and 

without considering the effect of humidity field on the 
surrounding rock. Literature [32] discusses the division 
of the impact of stress after tunnel excavation into 4 
zones. The outer part of the plastic zone (zone Ⅱ) is 
the area where the stress has increased compared with 
the initial stress. The zone can be combined with the 
area where the stress in the elastic zone of the surr- 
ounding rock has also increased (zone Ⅲ), to together 
represent the part where the surrounding rock supports. 
In contrast, the inner part of the plastic zone (zone I) 
has the stress decreased comparing with the initial 
stress, and it can be characterized as the ‘loosening’ 
zone. The stress in zone IV is the area which has not 
been affected by excavation, and the rock mass 
remains the orginal stress status. As shown by Fig. 4, 
with the inclusion of the effect of swelling stress, the 
radius of plastic zone has increased. Given the same 
support resistance of ip  0.16 MPa, the radius of the 
plastic zone has increased by a factor of 1.7 when the 
swelling stress has been considered. As shown by Fig. 
4, considering the swelling stress, the area of zone I 
expands, and the expansion means the thickness of the 
‘loosening’ zone of the surrounding rock increases, and 
the stress in the ‘loosening’ zone decreases significantly 
at the same time. Such effect causes the cracks to 
expand and increase, and therefore more support are 
required to prevent the further development of cracks. 

4.2.2 Numerical example 2 
The second model considers a deep-buried tunnel 

with swelling surrounding rock that has the following 
parameters: the hydrostatic pressure is 0p  7 MPa; 
the supporting resistance is ip  0.10 MPa; the radius 
of tunnel excavation is 0R  6 m; the surrounding 
rock has an elastic modulus of E  1 GPa, with a 
Poisson’s ratio of v  0.3 and a uniaxial compressive 
strength of c  6 MPa. The internal friction angle is 
  20°. The humidity swelling coefficient is    
0.03; maxw  3%; and 0w  2%.  

 

 

Fig. 5  Plots of stress of surrounding rock under the same 
supporting condition, with (blue) and without (red) 

considering swelling stress 

 

 
Fig. 6  Plots of stress of surrounding rock  

in the same plastic zone radius, with (red) and without (blue) 
considering swelling stress 
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Figures 5 and 6 show the calculated radial stress r  
and hoop stress   with and without the inclusion of 
the swelling stress. When the surrounding rock turns 
into a plastic state, the spatial position where the maxi- 
mum stress occurs moves from the tunnel to the 
elastic-plastic interface. Towards the internal of the rock 
mass, the stress of the surrounding rock gradually 
returns to the original state. As shown in Fig.5, given the 
same support resistance of ip  0.05 0p , the radius of 
the plastic zone of the surrounding rock is 1.22 0R  if not 
considered the swelling stress, whereas the radius 
increases to 1.44 0R  when the swelling stress has been 
included, which is a factor of 1.17 compared with the 
former. Similarly, as shown in Fig. 6, given the same 
plastic zone radius of pR  1.22 0R , the support reaction 
force is solve as ip  0.24 0p  when the swelling stress 
has been considered, which is 4.8 times of that when it 
has been ignored. 

As shown by the modelling results, a proper control 
of the radius of the plastic zone allows the surrounding 
rock to fully exert its self-supporting. If the external 
support can be applied after a specific amount of 
deformation of the tunnel, the burden on the support 
can be reduced efficiently. 

5  Sensitivity analysis of parameters 

The elastoplastic solution given in this paper has 
included the effects of swelling stress and dilatancy. In 
this section, we analyze the sensitivity of the solution 
to the parameters such as the water content change 

w , the swelling coefficient of the surrounding rock 
 , and the dilatancy angle  , etc., to further 
investigate the effects of swelling stress and dilatancy 
on the stress and strain of the surrounding rock. 
5.1 Effect of the water content change Δw 

We first investigate the effect of water content 
change. The computational model uses the following 
parameters: hydrostatic pressure is 0p  7 MPa; support 
resistance is ip  0.10 MPa; tunnel excavation radius 
is 0R  6 m; the surrounding rock has an elastic 
modulus of E  1 GPa, with a Poisson’s ratio of v   
0.3, and a uniaxial compressive strength of c  6 MPa. 
The internal friction angle is   30°, and the humidity 
swelling coefficient is   0.03. Since the swelling 
stress of the surrounding rock depends only on the 
difference between the current and the initial water 
content, we fix the initial water content to be zero 
( 0w  0), to simplify the problem. That is, we use the 
value of maxw  to represent the change of the water 
content of surrounding rock. 

As shown from Fig.7, given the same supporting 
resistance ip , the higher the maximum water content 

maxw , the larger the radius of the plastic zone. Since 
0w  0, the value of maxw  reflects the change of water 

content at each point in the surrounding rock. As the 
change of water content in the surrounding rock increases, 
the swelling stress also increases accordingly. It is 
worth noting that when the change of water content 
reaches to a certain amount, the tensile stress will 
appear in surrounding rock of the tunnel. As shown in 

Fig. 4(a), a tensile stress zone appears in the plastic 
zone of the surrounding rock when maxw  15%. As 
the support resistance is fixed, the plastic zone 
expands, and results in a decrease of the maximum 
stress on the elastic-plastic interface compared with 
the case when maxw  12%. The emergence of tensile 
stress is unfavorable to the surrounding rock of the 
tunnel. For the swelling surrounding rock, the support 
should be closed immediately after the excavation to 
prevent it from absorbing water or soaking. Besides, 
waterproof and drainage measures are necessary to 
reduce the impact of water on the surrounding rock. 
On the one hand, it reduces the weakening effect of 
water on the surrounding rock. On the other hand, it 
reduces the swelling stress and therefore prevent the 
appearance of tensile stress zones in the surrounding 
rock. 
 

 
      (a) Radial stress 

 

 
  (b) Hoop stress 力 

Fig. 7  Plots of stress of surrounding rock  
with different wmax 

 

5.2 Effect of the humidity swelling coefficient   
Figure 8 shows the response of surrounding rock 

to different humidity swelling coefficient . The 
computation uses the following parameters: hydrostatic 
pressure is 0p  7 MPa; support resistance is ip   
0.10 MPa; tunnel excavation radius is 0R  6 m; the 
surrounding rock has an elastic modulus of E  1 GPa, 
with a Poisson’s ratio of v  0.3 and a uniaxial com- 
pressive strength of c  6 MPa. The internal friction 
angle is 30°; maxw  4%, and 0w  2%. 

The straight line l shown in Fig. 8 is the radial 
displacement of the tunnel wall when the radius of the 
plastic zone is 0R . This displacement is the minimum 
deformation of the surrounding rock, and the corresponding 
supporting resistance ip  is the maximum. As illustrated 
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from the figure, with the increase of the swelling 
coefficient of the surrounding rock, the minimum de- 
formation increases linearly. The impact of the swelling 
coefficient is significant on the deformation of the 
surrounding rock. With the same supporting resistance, 
the deformation of the surrounding rock can be different 
by a few times. If no support are given ( ip  0), the 
displacement at the tunnel wall is calculated as 6.1, 
13.6, 16.3, 26.5, and 34.1 cm, corresponding to the 
swelling coefficients   of the surrounding rock 
chosen as 0.00, 0.03, 0.04, 0.08, and 0.10, respectively. 
As shown by this example, considering the water 
effect during tunnel excavation with highly swelling 
surrounding rock (e.g.,   0.1),  the deformation of 
the surrounding rock caused by ground stress is 6.1 cm, 
whereas the deformation caused by swelling stress is 
28 cm. The total deformation of the surrounding rock 
has increased 5.6 times, and the deformation caused 
by swelling stress is much more significant than the 
one caused by ground stress. 

 

 
Fig. 8  Ground response of surrounding rock  

with different  

 
5.3 Effect of the dilatancy angle ψ  

Figure 9 illustrates the response of surrounding 
rock to different dilatancy angle ψ. The computation 
uses the following parameters: hydrostatic pressure is 

0p  7 MPa; support resistance is ip  0.10 MPa; 
tunnel excavation radius is 0R  6 m; the surrounding 
rock has a uniaxial compressive strength of c  6 
MPa, with an elastic modulus of E  1 GPa and a 
Poisson’s ratio of v  0.3. The internal friction angle 
is   30°. The humidity swelling coefficient is    
0.03; maxw  4%, and 0w  2%. 

As shown by the figure, when the supporting 
pressure is high enough, the effect of dilatancy can be 
neglected due to the small deformation of the 
surrounding rock. With the decrease of the supporting 
pressure, the impact of the dilatancy angle becomes 
severe on the deformation of the surrounding rock. For 
example, if no support is given, the radial displace- 
ment of the rock around the tunnel is 13 cm if the 
dilatancy effect is not considered (that is,   0°). In 
contrast, with   30°, the calculated radial displacement 
of the rock is 20.7 cm around the tunnel. Compared 
with the simulated result without the dilatancy effect, 
the radial displacement of the surrounding rock has 
increased by 59%. From the perspective of the de- 

formation mechanism of swelling rock, the observation is 
essentially the mutual product of swelling deformation 
and stress dilatancy caused by the swelling of surrounding 
rock in contact with water. Swelling soft rocks, especially 
the ones that are deeply buried, are not swellable before 
being disturbed, where the swelling pressure generated 
by water is less than the ground stress. The rock is in a 
latent plastic state [19], with a high storage of the strain 
potential. As the tunnel excavation unloads, due to the 
low strength-to-stress ratio, the surrounding rock will 
rapidly form a plastic zone. The pressure in the sur- 
rounding rock will be changed from the initial hydrostatic 
pressure state, to a non-linear state that gradually 
increases from the inner rock to the rock-air interface. 
Non-linear swelling occurs. Shear dilatation then 
appears with the growth of secondary fractures, as well 
as the expansion and merging of various primary and 
newly generated fractures. The adjustments of structures of 
swelling soft rocks can strengthen the diffusion of 
humidity, which further promotes the process of 
swelling that had been constrained before. Therefore, 
the swelling of the surrounding rock to water and the 
stress dilatancy of the rock have resulted in a coupled 
process, which together contribute to the inward dis- 
placement of the tunnel wall. Thus, the dilatancy effect 
of the swelling surrounding rock cannot be negligible 
when considering the deformation of the surrounding 
rock of the tunnel.  

 

 
Fig. 9  Ground response of surrounding rock  

with different  

6  Discussion 

This paper derives the solution to humidity distribution 
in porous media. The solution describes the humidity 
transfer from the inside to the outside of the tunnel 
under pressure. Therefore, the solution derived here 
that has considered the stress and strain of the swelling 
rock tunnel can be applicable to the case when the solid 
skeleton expands due to the effect of "adsorption". 

To reduce the complexity in maths, the solution 
derived in this paper has made a few simplifications. 
For example, we assume that the mechanical properties 
of swelling rock remain unchanged within a certain 
range of water content, and we have not included the 
effect of the intermediate principal stress and dilatancy 
angle into the solution of stress, as well as the softening 
of strain, etc. These problems will be further studied in 
our future research based on the Hoek-Brown failure 
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criterion [33–34] and the use of a semi-analytic method [33]. 

7  Conclusion 

Based on the theory of humidity stress field and 
with the use of the non-associated flow rule, we have 
derived an elastoplastic solution that considers the 
swelling stress and dilatancy effect to a deep-buried 
circular tunnel. We present a few numerical examples 
to demonstrate our theory and to investigate the effects 
of the parameters on the stress and the deformation of 
the surrounding rock, including the change of water 
content w , the humidity coefficient   and the 
dilatancy angle  , etc. The key findings are revisited 
and concluded as follows: 

(1) The inclusion of swelling stress, comparing 
with the one that not considering it, has the plastic 
zone expanded and the thickness of the loosening zone 
increased given the same supporting resistance. Given 
the same the radius of the plastic zone, the required 
support resistance appears to be higher when con- 
sidering the swell stress. The burden on the support 
can be reduced efficiently, if the radius of the plastic 
zone can be controlled appropriately to fully exert the 
self-supporting of the rocks, and if the support can be 
applied after allowing a specific amount of deformation 
of the tunnel.   

(2) The impact of the change of water content is 
obvious on the stress and deformation of the surr- 
ounding rock. The higher the maxw , the larger the 
plastic zone of the surrounding rock. When the water 
content changes to a certain extent, tensile stress 
appears in part of the plastic zone of the surrounding 
rock. With the increase of the humidity swelling 
coefficient  , the deformation of the surrounding rock 
increases linearly. Considering the tunnel excavation 
with high swelling surrounding rock that in contact 
with water, the deformation caused by the swelling 
stress can be much more significant than that caused 
by the ground stress. 

(3) The impact of stress dilatancy of swelling 
surrounding rock cannot be negligible when con- 
sidering the deformation of the tunnel surrounding rock. 
In particular, when the supporting resistance is relatively 
small, the radial displacement of the surrounding rock 
at the tunnel wall can be increased significantly if the 
dilatancy effect has been considered.  
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