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Intelligent recognition of tunnel stratum based on advanced drilling tests 
 
FANG Yu-wei1, 2,  WU Zhen-jun1, 2,  SHENG Qian1,2,  TANG Hua1, 2,  LIANG Dong-cai1, 2 
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 

430071, China 

2. University of Chinese Academy of Sciences, Beijing 100049, China 

 

Abstract: The reliable recognition of strata in front of tunnel face is significant for the stability and safety of the tunnel engineering 

project. Traditional advanced geological forecasting methods could not ensure high identification accuracy, low cost and short 

construction time simultaneously, and they can’t satisfy the universality of stratum identification under different geological conditions. 

The advanced forecasting efficiency could be significantly enhanced if the drilling data of surrounding rocks in front of the tunnel 

face can be obtained while performing the conventional advanced borehole to attain the rock conditions at different drilling depths in 

real time, which would be convenient and efficient by not affecting the construction period. However, no objective and accurate 

stratum identification methods are found. In this paper, we proposed an intelligence analysis of drilling data and stratum recognition 

method based on neural network. It is used to analyze the advanced drilling test data of Jiudingshan Tunnel of ChuxiongDali 

highway and the analysis method was verified by the strata exposed after tunnel excavation. The results show that the error rate of 

stratum recognition using the single drilling parameter is about 35%. The combination of blow energy and blow number, water supply 

pressure and water supply rate cannot significantly improve the accuracy of stratum recognition. The combination of drilling speed, 

torque, rotation speed and propulsion can reduce the error rate to 22% for stratum recognition. The error rate can be sharply decreased 

by 9%12% when the standard deviation of drilling parameters is introduced into the neural network model. The error rate of stratum 

recognition is less than 10% for random sampled data and it is less than 14% for a single borehole using the neural network model 

with the combination of multiple drilling test parameters. 

Keywords: drilling test; neural networks; tunnel; stratum; intelligent recognition 

 

1  Introduction 

The proportion of newly-built highway tunnels in 
the southwestern mountainous areas in China usually 
exceeds 50%. The difficulty of construction under bad 
geological conditions is also increasing, which puts 
forward higher requirements for the safety control on 
tunnel construction. The reliable identification of the 
stratum in front of the tunnel is one of the important 
factors to ensure the stability and safety of the tunnel 
engineering. Traditional advanced geological forecasting 
methods mainly include geological survey methods, 
advanced pilot pit forecasting methods, various geophysical 
prospecting methods, and advanced drilling forecasting 
methods. The geological survey method is convenient 
in operation and does not delay the construction period. 
However, it is difficult to accurately predict the structure 
surface with a large inclination angle and the complex 
geological body, which puts forward a higher requirement 
on the geological knowledge and experience of the 
operator. The advanced pilot pit forecast method is 
relatively intuitive and has a high accuracy, but it has a  
long forecast distance and high cost. Geophysical 
prospecting methods mainly include electromagnetic 

wave reflection method and seismic wave reflection 
method. The electromagnetic wave reflection method, 
which belongs to a short-distance advanced forecasting 
method, is convenient in operation and has a high 
efficiency. However, it is difficult to distinguish between 
groundwater and broken rock mass because this method 
is easily disturbed by the surrounding electric and 
magnetic fields. The seismic wave reflection method 
has little interference on tunnel construction. It has a 
long prediction distance, which shows a good applicability 
to bad geological bodies. However, it has disadvantages 
such as inaccurate prediction position and insignificant 
response to small caves. The traditional advanced core 
drilling method is more reliable and accurate, but it 
requires the identification on drilling cores, which 
makes it difficult to obtain cores in weak interlayers. It 
has disadvantages such as high cost and prolonged 
tunnel construction time. If the drilling data of the 
surrounding rock in front of the tunnel face is acquired 
while the advance drilling is performed, the advance 
prediction efficiency can be greatly increased based on 
the real-time and accurate acquisition of the rock 
formations at different depths of the drilling and the 
stratigraphic division. 
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Horner et al. (1977) evaluated the quality of formation 
and rock mass based on the drilling test technology. 
Many scholars including Smith[2], Pfister[3], Pazuki  
et al.[4], Gui et al.[5], Fortunati et al.[6], Colosimo[7], 
Garassino et al.[8], Suzuki et al.[9], Nishi et al.[10] and 
Sugawawa et al.[11] also used the drilling test methods 
in identification of formation boundary, foundation 
reinforcement, identification of weak layers, mud detec- 
tion, rock engineering evaluation and cave detection. 

Some geological survey equipment companies 
have also developed rapid drilling test systems, e.g., 
MWD of Japan Mining Research Corporation, DEFI 
of Jean Lutz of France, EXPLOFOR of Apageo of 
France. However, these systems can only achieve 
qualitative discrimination of rock formations. 

Yue (2014) found that if the MWD information is 
collected according to the drilling time, the drilling 
depth-time curve of the drill bit shows a piecewise 
linear variation. Each segment of the drilling speed is 
a constant, which represents a uniform rock block[12]. 
Zeng et al. (2017) found that the drilling speed of the 
same type of rock is not constant under the same 
drilling tool conditions through MWD[13], and the 
concept of drilling specific energy was introduced to 
evaluate the rock mass quality. Gu[14] introduced the 
concept of drilling hardness in the identification of 
formation boundary. Tan et al. (2006, 2014) established a 
formation interface instrument identification system 
GIWD[1516]. Based on the concept of drilling specific 
energy, the formation structure was identified during 
the diamond drilling in granite formations. A formation 
identification method based on drilling ability indicators. 
Tian et al. (2012) determined the nature of surrounding 
rock based on the drilling energy analysis[17]. The 
results were verified by drilling cores and TSP 
advance prediction etc. Qin et al. (2018) distinguished 
different rock masses by collecting the vibration 
spectrum and acoustic spectrum during the drilling 
process[18]. The experimental results proved that the 
accuracy of rock mass division by the acoustic 
spectrum was relatively high. LaBelle et al. (2000) 
proposed a neural network analysis method in the 
classification of rock formations based on indoor 
drilling tests[19] and the accuracy is up to 95.5%. 

The above research results of many scholars prove 
that the drilling test data can be used to identify the 
formation. The data usually collected during drilling in 
the drilling test includes the drilling rate, torque, 
propulsion force, number of revolutions, hydraulic 
pressure and acoustic frequency spectrum, vibration 
frequency spectrum, etc. The drilling speed, drilling 
energy, vibration and acoustic characteristics are often 
applied in the stratigraphic division. However, these 
methods lack objective stratigraphic division standards. 
For instance, the neural network analysis method is 
currently only used in laboratory drilling tests, and the 

validity of the drilling data obtained from actual 
engineering projects is worthy of further investigation. 

In this paper, the intelligent analysis of drilling test 
data and stratum identification method was proposed 
based on the neural network, which is applied to 
analyze the advanced drilling test data obtained from 
the Jiudingshan tunnel of the ChuxiongDali highway. 
The feasibility and effectiveness of the neural network 
model based on drilling test data were validated by 
comparing the strata identification results with the 
actual rock formation. 

2  Correlation between drilling test data and 
rock formation properties 

During the drilling process of a drill bit, the amount 
of energy consumed by cutting a unit volume of rock 
reflects the difficulty of the drill bit to cut the rock. 
Tan et al. (2006) proposed a new calculation formula 
of rock drillability index related to the drilling rate, bit 
torque, drilling speed, propulsion force and torque[16], 
which can reflect the changes in formation lithology 
and is applied in the identification of the strata. Yu 
(2018) deduced that the work done by the drilling rig 
consists of work done by torque and work done by 
drilling pressure[20]. The energy consumed during 
drilling is comprised of the energy consumed by the 
friction between the drill bit and the bottom of the hole 
and the energy consumed by cutting and fragmentation 
of rocks. The energy consumption per unit volume of 
rock by a drill can be deduced as follows: 

1 2 3
2 2 2

d
1 2 3

c 2
d

2π π 2

π

L L L
NM NF R FV

L L L

R V




  
      （1） 

where, N is the drill rotation speed; M is the torque 
of the drill;  is the friction coefficient between the 
cutting edge of the drill and the rock at the bottom of 
the borehole; F is the drilling pressure of the drill; R is 
the radius of the drill; dV is the drilling rate; and iL is 
the length of the cutting edge in the i-th column. 

Gao[21] thought that the drilling test data such as 
drilling rate, bit rotation speed, torque and propulsion 
force are related to the mechanical properties of rock 
mass. The SVR machine learning method was used to 
determine the uniaxial compressive strength of the rock, 
and the relationship between uniaxial compressive 
strength, cohesion, internal friction angle, rock mass 
strength, and the measured data while drilling was 
proposed. 

The above study shows that the measured data  
including the drilling speed, torque, propulsion force 
and rotational speed during the drilling process can be 
used for formation identification. However, there are 
great uncertainties of the drilling parameters caused by 
different drilling rigs, drill bit wear conditions, and 
operators during the drilling process. Due to the large 
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amount of data obtained, the test data usually exhibits 
strong randomness. The connection between different 
test parameters is not clear. It is difficult to obtain the 
quantitative relationships between drilling parameters 
and the rock properties without clearly understanding 
the rock breaking mechanism of the drilling tool. It is 
also challenging to quickly and accurately analyze the 
test data for the formation identification. Therefore, 
this paper tries to adopt the neural network method in 
machine learning to train the measured data and 
establish a reliable neural network model, which can 
quickly get the nonlinear mapping relationship 
between the complex drilling test data and different 
rock formations. 

3  Data acquisition of drilling test  

The Jiudingshan tunnel is a controlled project of 
ChuxiongDali highway. The tunnel is designed as a 
separate type with a maximum excavation width of 
17.34 m. The starting and ending mileages on the left 
tunnel are fromK281+506 to K289+090, and the total 
length of the tunnel is 7560 m. The starting and ending 
mileages on the right side are from K281+506 to 
K289+090, and the total length of the tunnel is 7597 m. 
The Jiudingshan that the tunnel traverses is located at 
the watershed of the three major water systems, i.e., 
Jinsha River, Lancang River, and Red River. It is 
adjacent to the Binchuan fault and Erhai deep fault, 
respectively on the east and west, and is located at the 
composite part of different tectonic systems. The 
tunnel passes through poor geological zones such as 
contact zone of limestone and granite porphyry, karst 
zone, fault fracture zone and so on, with poor stability 
of surrounding rocks. 

In order to ensure the safety of tunnel construction, 
many advanced drilling tests were carried out. The 
KOKEN RPD-180CBR multi-functional fast drilling 
rig produced by Japan Mining Research Company, 
which has strong applicability and can work under 
various geological conditions, was applied in the 
advanced drilling. The data acquisition system is 
shown in Table 1. The final drilling parameters include 
drilling speed, torque, rotation speed, propulsion, blow 
energy, number of blows, water supply rate, water 
supply pressure, EV energy (rock breaking energy per 
unit volume of rock). The information reflected by the 
propulsion, torque, blow pressure, and water delivery 
pressure when drilling the tunnel face is directly 
returned to the computer on the drilling rig through the 
sensor transfer box for reception and recorded in 
charts and numbers. All power sensing devices receive 
signals at the same time during data collection and the 
sampling interval is 2 cm drilled depth. 

10 sets of advanced drilling test data are collected 
from the right tunnel face of the Jiudingshan tunnel 
entrance, including the YK282+140 advance hole with 

a drilling depth of 72.20 m, YK282+214 advance hole 
with a drilling depth of 69.86 m, YK282+274 advance 
hole No.1 with a drilling depth of 70.20 m, YK282 
advance hole No. 2 with a drilling depth of 70.18 m, 
YK282+340 advance hole No. 1 at the tunnel central 
line with a drilling depth of 38.84 m, YK282+340 
advance hole No. 2 at the left position of the left wall 
arch with a drilling depth of 40.98 m, YK282+364 
advance hole with a drilling depth of 31.10 m, 
YK282+403 advance hole with a drilling depth of 
51.00 m, YK282+450 advanced hole with a drilling 
depth of 51.00 m, YK282+084.5 advanced hole with a 
drilling depth of 72.20 m. Among them, the first 9 sets 
of data are neural network model training data, and the 
last set of data is the verification data and does not 
participate in training. 
 
Table 1  Data acquisition system 
System unit Detailed information 

Data record unit 
Save the data in the memory card while processing the
signal of the sensor, recording and displaying in real 
time with the recorder 

Sensor transfer box Installed on the control unit or drilling rig,  
centralize the signals of all sensors 

Depth sensor 

Rotary encoder (1000 pulses/revolution), which  
converts the rotation angle of the sprocket of the  
drilling rig into pulses, and records the conveying  
volume of the power head 

Torque sensor 

The pressure sensor (35 MPa) is installed at the inlet 
and outlet of the hydraulic motor used for rotation to 
record the rotation hydraulic pressure and convert it 
into output torque 

Rotation sensor The flowmeter calculates the rotating working oil  
flow rate and converts it to the number of revolutions

Propulsion sensor 

The pressure sensor (35 MPa) is installed on the  
forward and backward hydraulic circuit of the  
propulsion to record the propulsion hydraulic pressure
and convert it into the propulsion force 

Blow pressure  
sensor 

The pressure sensor (35 MPa) is installed on the strike
circuit to record the blow pressure. Calculate the blow
ability and blow number based on the blow pressure 

Water delivery flow 
rate sensor 

The electromagnetic flow sensor (240 L) is set 
between the water pump and the drilling rig to record 
the water flow rate 

Water delivery  
pressure sensor 

The pressure sensor (10 MPa) is installed on the water
pipe to record the tunneling water pressure  

Drainage flow rate 
sensor 

The electromagnetic flow sensor (240 L) is connected
behind the water sealing device to record the drain  
flow rate 

Drainage pressure 
sensor 

The pressure sensor (10 MPa) is connected behind the
water sealing device to record the drain water pressure

Fixture pressure  
sensor 

The pressure sensor (35 MPa) records the hydraulic 
pressure on the closed side of the fixture. The  
recording is automatically interrupted when the 
pressure on the closed side of the fixture rises and the 
fixture is closed 

 
Figure 1 shows the advance drilling record of the 

mileage YK282+214 and the actual strata observed 
after excavation. It can be seen that the correlation between 
the measured curves of drilling speed, propulsion, torque, 
etc., and the actual strata is not obvious and it is 
difficult to judge manually. Figure 2 is a scatter diagram 
of the combination of drilling speed, propulsion, 
torque, rotation speed, water supply rate, water supply 
pressure, blow energy and EV energy. The graphs on 
the diagonal are the kernel density estimates of these 
groups of data, which show no obvious rules. Taking 
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the drilling speed as an example, it is generally 
considered that the drilling speed is fast when the rock 
formation is poor, and the drilling speed is slow when 
the rock formation is good. However, the drilling 
speeds of limestone, fractured limestone, and soft 
interlayers are all low, and the maximum frequency 
distribution of drilling speeds is also similar. The only 

difference is that the discreteness of the drilling speed 
of limestone and fractured limestone is small, while 
the discreteness of the drilling speed of soft interlayer 
is much larger. Therefore, both the drilling test data in 
formation identification and the statistical characteristics 
of different drilling test data are required to be con- 
sidered in stratum identification.
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Fig. 1  Drilling test data of YK282+214 
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(b) Pairwise combination scatter plot and kernel density estimation of the blow number, blow pressure, water supply rate, water supply pressure, EV 

Fig. 2  Scatter plot and frequency distribution chart of drilling test data 
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layer is a n-dimensional vector. When the processing 
unit receives the information, it firstly calculates the 
weighted sum of each component i iw X  ( iw is the 
weight of each component), and a threshold b acts as 
the input of the activation function of the processing 
unit. The activation function performs a linear or 
non-linear operation on the input value and then 
outputs it. The output information of the processing unit 
to the next layer of processing unit is then obtained 
as ( )i iy b w X  . 

The raw data (torque, drilling speed, rotation speed, 
propulsion, blow energy, number of blows, water 
supply rate, water supply pressure, EV energy) 
received by the sensor during the drilling process and 
their respective standard deviations are used as the 
input variables of the input layer data in the neural 
network model. The formation identification is the 
final results of the output layer in the neural network 
model. The ultimate goal of the neural network is to 
identify rock formations by analyzing the drilling test 
data with a minimum error, and obtain the recall rate 
and accuracy of a specific formation classification, which 
are considered as auxiliary evaluation indexes for 
formation classification. The recall rate represents the 
ratio of the number of searching a certain layer to the 
total number of the layer. Accuracy represents the ratio 
of the number of stratum found to the total number of 
layers. When the recall rate and accuracy are close to 1, 
demonstrating a high accuracy of stratigraphic classi- 
fication. 

 

 
Fig. 3  Schematic diagram of neural network 

 
Four formations have been numbered based on the 

observed lithology after excavation of tunnel, and they 
are regarded as the target data for neural network 
training (see Table 2). 

 
Table 2  Stratum number 

Lithology Number 

Fractured limestone 1 

Limestone 2 

Clay interlayer with sand 3 

Soft interlayer 4 

The back propagation algorithm has been applied 
in the neural network for the dataset training and two 
hidden layers have been used. The neural network 
model with different hidden layers is designed to 
understand their impacts on the stratum identification. 
It is shown in Fig.4 that the error rate of stratum 
identification gradually decreases with the increase of 
hidden layers. When the number of hidden layers is 
1719, the error rate tends to be stable. Therefore, the 
number of hidden layers is selected to be 18 in the 
neural network. 
 

 
Fig. 4  Error rate curve of neural network 

 
Many assemblages of input drilling variables are 

used to investigate their impacts on the training. It is 
shown in Fig.2 that the accurate estimation on 
geological formation is not only related to the drilling 
parameters, but also presents the correlation with the 
statistic results of drilling parameters. The standard 
deviation of drilling parameters can be regarded as the 
input variables for training in the neural network 
model, which can increase the accuracy of stratum 
identification[19]. Therefore, the standard deviation of 
drilling parameters, whose scope is based on a group 
of single parameter during a single drilling process, 
has been introduced in the training of neural network 
model. 

The 9 groups of advanced drilling test data, with a 
total of 33113 lines, have been selected in the neural 
network training. The final one group of data acts as 
the validation data. The 70% of the data is randomly 
selected from these 9 groups of data as a training 
dataset, 15% as a cross-validation dataset, and 15% as 
a test dataset. The classification of stratum and error 
rate are as the final training results. There are 21 kinds 
of training schemes (see Table 3), considering the single 
drilling parameter (scenario 19) and their combinations 
(scenario 10); the assemblage of drilling speed, torque, 
rotation speed and propulsion (scenario 11), and their 
combinations with the respective standard deviations 
(scenario 14); the assemblage of blow energy and the 
number of blows (scenario 12) and their combinations 
with the respective standard deviations of these 
parameters (scenario 15); the assemblage of water 
supply rate and water supply pressure (scenario 13) 
and their combinations with the respective standard 
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deviations of these parameters (scenario 16); the 
combination of EV energy and its standard deviation 
(scenario 17); the assemblages of drilling speed, 
torque, number of revolutions and propulsion and their 
corresponding standard deviations with other parameters 
(scenario 1820); the assemblage of drilling speed, 
torque, rotation speed, propulsion, blow energy, the 
number of blows, water supply rate, water supply 
pressure and EV energy with their respective standard 
deviations (scenario 21).  

The learning curve of neural network model can be 
seen in Fig.5. It shows that the errors of training 

dataset, validation dataset and test dataset decrease 
with the increase of training number. The minimum 
error of validation dataset occurs after the 48th 
iteration. The error of validation dataset and training 
dataset are low and their difference is small. It implies 
that there exists no over-fitting or under-fitting in the 
neural network stratum identification models, that is,  
the model performs too well in the training samples, 
resulting in poor performance in the validation set and 
test set, or the model has a low degree of fit, leading to 
poor performance in the training dataset, validation 
dataset and test dataset. 

 
Table 3  Training scheme of neural network 

Drilling parameters 
Scenario number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Drilling rate/(m·min−1)                     

Torque/kN                     

Rotation speed /min−1                     

Propulsion/kN                     

Blow energy/J                     

Number of blows                      
Water supply flow rate 

/(L·min−1)                     

Water supply pressure 
/MPa                     

EV energy                     

Drilling rate std.                     

Torque std.                     

Rotation speed std.                     

Propulsion std.                     

Blow energy std.                     

Number of blows std.                     

Water supply rate std.                     
Water supply pressure 

std.                      

EV std.                     

 

 
Fig. 5  Learning curve of the experiment No.21 

 

5  Stratum identification by neural network 
model 

The stratum identification results based on 21 
groups of neural network model are shown in Table 4, 
which includes the error rates of stratum identification 
based on each training scheme and the recall rate and 
accuracy of single layer identification. 

The error rate is up to 29.8%36.7% when using 
the single drilling parameter in the stratum identification 

(scenario 19). It implies that the single drilling parameter 
can’t be used in the stratum identification by neural 
network. 

Scenario 10 uses all the drilling parameters in the 
input data, and the error rate of formation identification 
drops to 19.0%. Compared with the training results of 
schemes 19, the recognition error rate of all drilling 
parameter combinations is up to 18.4% lower than that 
of a single drilling parameter, which shows that the 
combination of all drilling parameters can greatly 
reduce the formation recognition error rate. 

The comparison of the results of scenarios 11, 12, 
13 and scenarios 19 shows that the combination of 
24 parameters can reduce the error rate of formation 
recognition, but the effect is not significant. Among 
them, the combination of drilling speed, torque, rotation 
speed, and propulsion can greatly reduce the error rate 
of formation recognition. Compared with the combination 
of blow energy and number of blows, the error rate is 
reduced by 11.9%, while the error rates are reduced by 
6% and 11.5% compared to the combination of water 
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supply pressure and water supply rate, and EV energy, 
respectively. This is consistent with the results based 
on the drilling energy analysis proposed by Yu (2018) [20] 

and Tan et al. (2006) [16]. It shows that the drilling 
speed, torque, propulsion force, rotational speed and 
other parameters can be used to divide the formation 
with good results. 

The comparison of the results of scenarios 11 and 14, 

scenarios 12 and 15, scenarios 13 and 16, and scenarios 9 
and 17 shows that the input data is combined with the 
respective standard deviation can significantly reduce 
the error rate in the range of 9% and 14.0%. Among 
them, the combination of drilling speed, torque, 
number of revolutions, propulsion force and their 
respective standard deviations has the lowest error rate 
( i.e., 13.7%). 

 
Table 4  Results of stratum identification 

Test number 

Formation 1 Formation 2 Formation 3 Formation 4 Error rate of 
stratum 

identification 
/%

Recall rate /% Accuracy /% Recall rate /% Accuracy /% Recall rate /% Accuracy /% Recall rate /% Accuracy /% 

1 9.3 42.2 96.1 67.3 1.8 100 20.2 51.3 34.7 

2 4.4 62.6 98.2 63.5 0.0 0.0 6.9 54.4 37.1 

3 13.1 48.4 94.9 63.6 0.0 0.0 3.3 63.3 37.4 

4 35.5 59.9 91.1 73.5 0.0 0.0 38.3 56.5 29.8 

5 5.8 35.4 93.8 66.3 0.0 0.0 30.1 53.4 35.8 

6 0.0 0.0 99.4 63.3 0.0 0.0 4.1 41.4 36.7 

7 86.1 56.2 97.5 65.5 0.0 0.0 5.1 60.0 35.0 

8 24.3 63.5 95.5 70.0 0.0 0.0 26.1 56.3 31.4 

9 0.0 0.0 96.7 66.3 0.0 0.0 45.7 61.4 34.2 

10 51.9 74.8 93.9 83.2 50.7 69.8 74.9 77.4 19.0 

11 45.1 68.7 92.5 80.6 38.7 60.0 68.9 70.5 22.7 

12 4.6 32.1 95.4 67.3 1.8 14.3 31.5 58.3 34.6 

13 43.5 59.8 90.4 75.4 16.7 58.8 35.5 58.2 28.7 

14 76.4 80.2 93.2 90.3 55.8 70.5 74.0 77.7 13.7 

15 73.4 69.7 90.5 82.2 9.0 70.0 34.0 68.8 21.9 

16 72.2 84.3 94.2 85.1 36.9 82.8 49.2 63.1 17.2 

17 64.0 71.3 90.7 84.7 32.4 40.0 60.5 70.1 20.2 

18 78.6 80.2 92.5 90.6 43.8 69.6 74.0 76.7 13.8 

19 77.2 77.7 91.9 91.3 51.2 82.7 75.7 74.7 14 

20 83.9 85.6 94.5 93.4 63.6 73.1 79.9 80.4 10.3 

21 85.4 85.3 94.5 94.0 68.7 75.0 81.0 82.7 9.6  
 

The comparison of the results between scenario 18, 
19, 20 and the combination of scenario 15, 16 and 17 
demonstrates that the error rate (10.3%) drops the 
most after adding the water supply rate, the water 
supply pressure and their respective standard deviations, 
which is 3.4% less than that of the combination of 
drilling speed, torque, rotation speed, propulsion and 
their standard deviations alone. Compared with the 
scenario 21, the difference is only 0.7%. It shows that 
the combination of drilling speed, torque, rotation 
speed, propulsion force, water flow, water pressure 
and their respective standard deviations can be used as 
the main parameters in the neural network to identify 
the formation. 

The error rate is reduced by 9.4% in the scenario 
21 after adding the standard deviation of drilling 
parameters based on the scenario 10, and the final 
error rate is only 9.6%. 

6  Error analysis of neural network model 

Figure 6 is the error matrix of test data in the 
training scenario 21. The first 4 columns of the fifth 
row are the recall rates of each stratum, with the 

minimum and maximum values of 68.7% and 94.5%, 
respectively. The first 4 lines in the 5th column show 
the accuracy of each stratum, which is in the range of 
75.0% and 94.0%. The 5th line and 5th column are the 
final test results, where the red numbers represent the 
error rate and the green numbers represent the 
accuracy. 
 

 
Fig. 6  Error matrix of the training experiment No.21 

Actual stratum 

1 2 3 4 5

P
re

di
ct

ed
 s

tr
at

um
 

1

2

3

4

5

1318
19.9%

150
2.3%

16
0.2%

60
0.9%

85.4%
14.6%

147
2.2%

3938
59.5%

3
0.0%

80
1.2%

94.5%
5.5%

24
0.4%

2
0.0%

57
0.9%

0
0.0%

68.7% 
31.3% 

56
0.8%

101
1.5%

0
0.0%

671
10.1%

81.0%
19.0%

85.3%
14.7%

94.0%
6.0%

75.0%
25.0%

82.7%
17.3%

90.4%
9.6%

Error matrix of test dataset 

8

Rock and Soil Mechanics, Vol. 41 [2020], Iss. 7, Art. 11

https://rocksoilmech.researchcommons.org/journal/vol41/iss7/11
DOI: 10.16285/j.rsm.2019.6632



  2502                       FANG Yu-wei et al./ Rock and Soil Mechanics, 2020, 41(7): 24942503 

 

The standard deviation of one specific drilling 
parameter is a constant during one drilling process, 
implying that the standard deviation has no practical 
significance for the formation identification during a 
single drilling process. However, after adding many 
sets of drilling data, the standard deviation of drilling 
parameters can greatly improve the accuracy of formation 
recognition. This indicates that the standard deviation 
can be used to correct the drilling parameters of the rig 
under different drilling conditions and different operators. 
Since the drilling test data often shows certain statistical 
characteristics, the correction of drilling parameters by 
standard deviation is useful in studying the quantitative 
relationship model between drilling parameters and 
rock and soil mechanical properties. 

The YK282+084.5 advance hole drilling data that 
is not used for neural network training, is applied in 
the rock formation identification by the trained model. 
Figure 7 shows the comparison between the results of 

formation recognition and the actual stratum. The red 
dot or line represents the actual stratum, and the blue 
dot or line shows the result of stratum recognition. The 
recognition error rate is 13.82%. It can be seen that the 
deviation between the formation recognition result and 
the actual formation mainly occurs at the formation 
boundary and weak interlayer. This is because there is 
a transition phenomenon in the lithology at the stratum 
boundary. The drilling test data may be judged to be a 
certain formation or another, which leads to errors in 
the recognition by the neural network model. On the 
other hand, the actual stratum division is also revealed 
in the tunnel excavation process, and there is uncertainty 
in stratum division caused by human judgment. 

The neural network model can achieve accurate 
and intelligent recognition of most kinds of stratum, 
and the wrong recognition result at the stratum 
boundary is acceptable in engineering, which has a 
weak impact on the safety control of tunnel. 

 

 
Fig. 7  Comparison of recognized stratum based on neural network method and the true stratum 

 

7  Conclusions 

It is difficult to predict the variation law of drilling 
test data such as drilling speed, propulsion force, torque 
and actual formation. Both the drilling test data and 
the statistical characteristics should be considered in 
the formation identification. 

Considering the discreteness of drilling test data, a 
neural network analysis method for drilling test data is 
proposed, and a nonlinear mapping model for drilling 
test data and formation recognition is established. The 
analysis results of the drilling test data of Jiudingshan 
tunnel show that the accuracy of random sampling of 
formation recognition is more than 90%, and the 
accuracy of stratum recognition for a single borehole 
is more than 86%. 

Some drilling parameters such as the drilling speed, 
torque, rotation speed, propulsion force and their 
respective standard deviations are relatively sensitive 
to the formation recognition, and the combination of 
water supply rate, water supply pressure and their 
respective standard deviations can be used as the main 
input parameters of the neural network model for the 
formation identification. 

The amount of drilling test data has a certain impact 
on formation recognition. More test data is helpful to 

further improve the accuracy of formation recognition. 
The geological conditions encountered in this test are 
limited, so the training on more rapid drilling data 
from different geological conditions in engineering 
can improve the applicability of the model. 

The neural network model has difficulties in iden- 
tifying stratum boundaries and soft interlayers, and the 
drilling parameters fluctuate greatly in these areas. 
The intelligent identification of weak interlayer is 
worthy of further study. All input and output data in 
each group of BP neural network are independent, 
leading to the variation law at the stratum boundary 
cannot be considered. The accuracy of stratigraphic 
division can be improved by acquiring more rapid 
drilling data of different engineering and using the 
recurrent neural network model to train the data. 
Recurrent neural networks have some advantages in 
learning sequence data, and they are widely applied in 
language recognition and machine translation. The 
recurrent neural network can recognize the formation 
of a certain depth considering the conditions around 
the formation and make predictions. However, a 
greater amount of data is required than that of the BP 
neural network if a relatively high accuracy rate is to 
be obtained. 
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