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An improved overload limit equilibrium method of rock blocks 

XIAO Guo-feng 
(State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 

430071, China) 

Abstract: The lifting mode is one of the failure modes of finite movable blocks proposed by block theory. Although direct collapse is 
the most common failure mode in underground engineering, there is still a lack of suitable quantitative stability analysis methods, 
resulting in the scarcity of necessary theoretical support for the excavation and reinforcement design of underground engineering. To 
this end, an improved stability analysis method for rock blocks considering progressive damage is proposed. Main improvements 
include: introducing overload base and overload direction to quantify the reserve load; proposing two options of overload base which 
are Tan and Scal; and setting the overload direction on the boundary sector of the joint pyramid. The example verification results 
show that the improved method is fully compatible with the existing safety factor algorithm for the wedge failure mode. It realizes the 
quantitative stability analysis of the lifting mode. Finally, the stiffness assignment method and its sensitivity are discussed. 
Keywords: block theory; rock mass stability analysis; rigid body limit equilibrium; embedded mode; overload safety factor; overload 
base; overload direction 

1  Introduction 

Stability analysis of rock masses, a prerequisite for 
geotechnical engineering design, can provide scientific 
guidance for the design of support structures[1]. Stability 
problems of rock masses involve many engineering 
fields such as mining engineering, road and bridge 
engineering, hydraulic engineering and construction 
engineering[2]. For current engineering applications, 
the limit equilibrium method is a mainly used method 
for quantitative stability analysis[1]. 

Based on the motion mode, the stability analysis 
methods of rock masses can be classified into two 
types: translational and rotational[3]. The translational 
stability analysis method was originally proposed by 
Wittke[4], John[5], and Londe et al.[6] based on the 
wedge-shaped body model, and the block theory 
proposed by Goodman et al.[7] extended it to arbitrary 
convex blocks. The concept of block theory is clear 
and its geometric theory is perfect, and it has been 
widely used in stability analysis and support design of 
rock engineering[8–9]. According to the active force 
direction, Shi [7, 10–11] classified movable blocks into 
four categories: lifting, single-face sliding, double- face 
sliding and embedded (stable even without friction). 

For single-face sliding and double-face sliding, the 
safety factor algorithms have numerous forms[6, 12–13], 
which are compatible with each other. For the embedded 
mode, some scholars[8, 14] have also proposed safety 
factor algorithms. Zhang[14] used the block-dividing 
method, and Jiang et al.[8] used the vertical differential 
column method to discretize blocks with multiple 
discontinuity planes to conduct quantitative stability 
analysis. Both methods introduced the idea of the slice 
method in two-dimensional soil analysis, and the 
difficulties in the slice method were systematically 

analyzed by Zhu et al.[15] and Zheng[16]. For the lifting 
mode, Xiao et al.[17] introduced the description of 
intermittent coplanar discontinuities and achieved 
quantitative stability analysis by the tensile capacity of 
rock bridge. However, this method is not compatible 
with the conventional single/double-face sliding algorithms. 

From the viewpoint of engineering, direct collapse 
is a common destabilization phenomenon in underground 
engineering, and a quantitative analysis method of the 
lifting mode is necessary. Only quantitative analysis 
can provide more reasonable technical support for 
excavation and reinforcement design. 

Hence, this paper improves the stability analysis 
method considering progressive failure proposed by 
Xiao et al.[17]. The three main improvements are listed 
as follows: (1) introducing overload direction and 
overload base to quantitatively describe the reserve load; 
(2) restraining the overload direction on the boundary
sector of the joint pyramid; and (3) proposing two ways
of setting the overload base, i.e., Tan and Scale. The
compatibility of the improved method with the
traditional algorithm and its applicability to the lifting
mode are verified by examples. Finally, the
assignment problem of the stiffness parameter and its
sensitivity are discussed.

2  Improved model and methodology 

For convenience, the improved method is named 
overload limit equilibrium method considering progressive 
failure process (POLE) according to its main features, 
abbreviated as method. The POLE method consists of 
four parts: geometric model, mechanical model, static 
equilibrium and limit equilibrium. 
2.1 Geometric model 

A convex block is the intersection of finite negative 
half-spaces, represented algebraically as 
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=1
m

iiB H                                 （1） 

where i is the serial number; m is the number of 
half-space; and H is the negative half-space. 

The algebraic expression of the negative half-space 
is 

: H p ≤n x                               （2） 

where p is the distance between origin and boundary 
plane; x is an arbitrary point in the negative half-space; 
n is the unit outward normal vector of the boundary 
plane, it can be written as 

(sin sin ,sin cos ,cos )     n             （3） 

where   is half space sign and with the two possible 
values: –1 or 1;  is the plane dip angle; and  is the 
plane dip direction. 

The quantified description of a negative half-space 
requires 3 parameters: occurrence, half space sign and 
origin distance. The corresponding quantified description 
of a convex block requires 3 sets of parameters: 
occurrence sequence, half space sign sequence and 
origin distance sequence. The modeling algorithm is 
described in the Ref. [18]. 
2.2 Mechanical model 

The mechanical model is shown in Fig. 1. The 
convex block is assumed to be a single rigid body and 
only translational motion is taken into account. The 
active force conF , also named the operating load, 
includes loads of definite magnitude and direction 
such as gravity, infiltration pressure, seismic force and 
reinforcement force. Only considering translational 
movement leads to simple vector summation for all 
loads. 

 

 
Fig. 1  Mechanical model for the static equilibrium analysis 

 
Slip fracture planes, the physical contact interfaces 

between the block and the surrounding rocks, are 
enclosed by discontinuities. Described as intermittent 
coplanar discontinuities, each structural plane is 
composed of two plane units: fracture and rock bridge. 
The unit area is allocated in the following way 

J

B (1 )
i i i

i i i

S K S

S K S




  
                           （4） 

where iS is the polygon area; iK is the connectivity 
rate; and superscripts J and B denote crack unit and 

rock bridge unit respectively (same below). 
Both the fracture unit and the rock bridge unit 

employ Goodman units to describe the relationship 
between stress and relative displacement, i.e. 

n

s

k

k

 


 

 

 
                                （5） 

where and  are the normal and tangential stresses 
of the plane unit, and the direction of the normal stress 
vector is specified as the direction of the unit outer 
normal vector of the boundary plane; nk and sk are 
the normal and tangential stiffnesses (MPa/cm); and 
 and   are the normal and tangential relative 
displacements (cm). 

Based on the assumption of rigid body translational 
motion, the relative displacement and the block 
displacement u of an arbitrary plane unit meet the 
geometric conditions: 

 
 

  


   

n n u

E n n u




                         （6） 

where E is the unit matrix; and  is the dyadic 
product. 

The block is under the static conditions, the stress 
of the plane unit and the external force of the block 
satisfy the equilibrium conditions: 

B B J J J
con( ) ( )B

i i i i i i
i

S S      F              （7） 

where i is the serial number of discontinuities. 
2.3 Static equilibrium 

Static equilibrium analysis is aimed at constructing 
a balanced stress field that satisfies both the static and 
strength requirements. The calculation is an iterative 
process (Fig. 2), which mainly contains four parts: 
block displacement, unit stress, failure determination 
and progressive failure. The block state is output after 
the computation cycles. 

 

 
Fig. 2  Loop for calculating the static equilibrium 

 
By substituting Eq.(6) into Eq.(5), the equations 

for obtaining the stresses of rock bridge unit and crack 
unit are derived as 

 
 

n
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i i i i

i i i i

k
k

 
   
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
                      （8） 

where nik and sik are the normal and tangential 
stiffnesses of the plane unit with the serial number of i, 
respectively. Substituting Eq.(8) into Eq.(7) yields the 
block displacement: 

Block
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Unit stress
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conMu F                                 （9） 
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The failure determination uses the existing strength 
criterion. The determination process is explicit. If the 
plane unit is identified to failure, the progressive 
failure description is described using the parameter 
reduction method. If not, the progressive failure of this 
unit ends. 

The progressive rupture of the rock-bridge unit is 
described by the reduction of connectivity rate: 

( 1) ( ) (0)0.01(1 )t t
i i iK K K                     （11） 

where superscripts ( )t and ( 1)t  are the iteration 
steps; and superscript (0) is the initial value. 

The connectivity rate is progressively increased 
with the progressive rupture of the rock-bridge unit. 
Since the maximum value of the connectivity rate is 1, 
when it reaches 1, the reduction stops and the 
progressive failure of this unit ends. 

The yielding of the fracture plane unit is described 
by the stiffness reduction. The specific equation is 

J( 1) J( ) J(0)
n n n

J( 1) J( ) J(0)
s s s

0.010

0.015

t t
i i i

t t
i i i

k k k

k k k





  


  
                  （12） 

With the progressive yielding of the fracture unit, 
the normal stiffness is progressively increased and the 
tangential stiffness is progressively decreased. Since 
the tangential stiffness is non-negative, the reduction 
stops and the progressive failure of this unit ends 
when the tangential stiffness reaches 0. When the 
progressive failure of all plane units ends, the static 
equilibrium analysis process ends. 

The output of the static equilibrium analysis is the 
state of the block. Based on the assumption of rigid 
body translation, there are only two states for the 
block: at-rest or motion. In engineering practice, there 
are mainly three types of rock instability phenomena: 
significant overall movement of rock and soil masses; 
significant morphological changes at the free face 
such as cracking, staggering, bulging and sinking; and 
functional loss or even complete failure of the 
reinforced structure. Therefore, the static equilibrium 
analysis of the rigid body is the most simplified model 
of rock instability phenomena. 

The block state is determined using two parameters 
describing progressive failure: the connectivity rate 
and the fracture tangential stiffness. If the connectivity 
rate of all discontinuities composing the slip crack 
surface reaches the maximum value of 1 and the 
tangential stiffness of all fracture units reaches the 
minimum value of 0, the block is in motion; otherwise 
it is at rest. 

2.4 Limit equilibrium 
The limit state is the critical state between the 

stationary state and the moving state, i.e., the limit 
equilibrium state. Only considering the active force, 
the block state obtained from the static equilibrium 
analysis may be stationary or in motion, and the 
possibility in the limit state is extremely low. 

To push the block to the limit state, the overload  
method[19–20] is introduced. In the static equilibrium 
analysis, the reserve load stoF  is superimposed to the 
service load of Eq.(9). 

con sto Mu F F                           （13） 

sto bas stoF F e                            （14） 

The quantitative description of the reserve load 
consists of three parameters: the overload coefficient 
 , the overload base basF  and the overload direction 

stoe . After setting basF and stoe , the limit equilibrium 
state of the block is found by iteration of the overload 
coefficient  . The overload factor corresponding to 
the limit equilibrium state is named the critical 
overload coefficient, denoted as cri . The relation 
between the safety factor of the block SF and the 
critical overload factor is algebraically simple. 

criSF 1                                （15） 

For SF 1 , the block is in the limit equilibrium 
state. For SF 1 , the reserve load has a clear 
engineering significance, a safety reserve to avert 
instability when subjected to uncertain loads. For 
SF  1, the block stability analysis is a prediction of 
rock mass stability. In other words, the block will 
destabilize once the critical plane is excavated. 

From the perspective of iterative algorithm, the 
overload coefficient requires an initial value, so the 
concept of zero point of overload coefficient is 
introduced. Taking the static equilibrium of the block 
in the overload direction into consideration 

 0 bas sto con sto sto 0F   e F e e                 （16） 

Then the zero point of the overload coefficient is 
expressed as 

con sto
0

basF
 

 
F e

                           （17） 

The overload base provides two setting options. 
First is the Tan option which is defined as the 
magnitude of the projected component of the active 
force in the overload direction. 

bas con stoF  F e                            （18） 

Second is the Scal option, which is defined as the 
active force scalar. 

bas conF F                                （19） 
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The overload base of the Scal option is the scalar 
directly transformed from the active force vector, 
which is independent of the overload direction. In 
contrast, the overload base of the Tan option is based 
on the overload direction, which is the magnitude of 
the tangential component of the active force vector in 
one of the boundary surfaces of the joint pyramid. 

The overload direction is set in the direction with 
the smallest angle to the active force direction on the 
joint pyramid boundary, regardless the block motion 
mode, including single-face, double-face, embedded 
or lifting. The embedded pyramid is the pyramid 
enclosed by all angular edge vectors eij , also the unit 
external normal vectors: 

0ij  ≤e x                                （20） 

When the active force direction vector is located in 
or at the boundary plane of the embedded pyramid, the 
block is in an embedded mode. Under pure gravity, the 
embedded mode of the discontinuities intersecting 
with the free face are "inward" or horizontal. It should 
be clearly pointed out that, in line with the definition 
of joint pyramid in block theory, as a geometric area, 
the embedded pyramid also contains the boundary 
plane of the pyramid. 

The setting of the overload direction is based on 
the block theory. Shi [11] proposed the principle of "the 
nearest direction" for the determination of the motion 
pattern and the setting of the motion direction. This 
principle can be specified as the following three rules: 
(1) the motion direction is inside the joint pyramid or 
at the boundary sector; (2) the angle between the 
motion direction and the active force direction is 
smaller than 90°; (3) the angle between the motion 
direction and the active force direction is minimum. 

From the perspective of static analysis, the 
overload direction and the motion direction can be 
regarded as the same concept. The overload direction 
is set by modifying two rules 1 and 2. For rule 1, the 
overload direction is restrained on the boundary of the 
joint pyramid. For rule 2, the angle between the 
overload direction and active force direction can be 
larger than or equal to 90°. The improvement of rule 2 
is for the stability analysis of the embedded mode, 
whose minimum angle between the active force and 
the boundary surface of the joint pyramid is larger 
than 90°. The improvement of rule 1 is for the stability 
analysis of the lifting mode, whose active force 
direction is inside the joint pyramid. 

After improvement, an extreme case of the 
overload direction needs to be considered, i.e., its 
angle to active force is 0° or 180°. These extreme 
cases appear in the lifting mode. During limit 
equilibrium analysis, the resultant force of the active 
force and the reserve load is 0 at the zero point of the 
overload coefficient, i.e., the right side of Eq. (13) is 0. 

con 0 bas sto 0F  F e                        （21） 

Its physical meaning is that the block is in a state of 
weightlessness or suspension. It is not the state of rest, 
nor the state of motion, which is out of the theoretical 
scope of limit equilibrium analysis. At this point, it is 
directly set toSF  0. 

Based on the implicit definition, the algorithm for 
the safety factor is an iterative process, which can be 
divided into 3 steps. First, the accuracy of the safety 
factor is set to   and the iteration interval of the 
overload factor is set to max[ ,  max ] . While 
extending the stability analysis scope to the lifting 
mode, the corresponding value range of the safety 
factor is extended to negative values. Second, static 
equilibrium analysis is performed at the zero point of 
the overload factor 0 to determine the block state. If 
the block is stationary, the iteration interval is 

0 max[ , ]  , otherwise it is max 0[ , ]  . Finally, 
according to accuracy requirements, the critical 
overload factor mcr and the corresponding safety 
factor are calculated iteratively within the iteration 
interval using the bisection method. 

3  Validation by examples 

3.1 Example 1 
This example, based on the physical model test of 

Kumsar et al.[21], contains six precast concrete 
wedge-shaped blocks with the serial number from TB1 
to TB6. The geometric parameters are defined 
according to the safety factor formula (Kovari's 
formula) proposed by Kovari et al.[13]. 

 
1 2

1 2 a

cos cos tan
SF

sin tan i

  
 





                  （22） 

where  is the friction angle; ai is the dip angle of the 
intersection edge, and the plane determined by two 
vectors of intersection edge and active force is P0; and 

1  and 2 are the dihedral angles of the 
discontinuities J1 and J2 with the plane P0. The 
geometric parameters of the Kumsar model are listed 
in Table 1. 

 
Table 1  Geometrical parameters of the Kumsar model[21] 
Symbol TB1 TB2 TB3 TB4 TB5 TB6

ai 29 29 31 27 30 30
 56 51 45 36 30 23

 
The physical test used the tilt test method, which 

changes the angle ai  by model rotation to measure 

ai at SF  1 so as to verify the effectiveness of the 
double-face sliding safety factor algorithm. The POLE 
method using Tan overload base option is marked as 
POLET, and the POLE method using Scal overload 
base option is marked as POLES . There are three 
purposes of calculation: (1) verify that the consistency 
of the POLE method using Scal option with physical 
test results; (2) verify that the results of the POLE 
method using Tan option is consistent with that using 
the Kovari formula; and (3) compare the POLE 
method using Scal option and the Kovari formula. 
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The geometric model is shown in Fig.3. The 
occurrences of free planes S1 and S2 are set to 0°/180° 
and 90°/180°, respectively, and the occurrences of 
discontinuities can be recalculated by the geometric 
parameters in Table 1. The plane serial number is (S1, 
S2, J1, J2), the half space sign sequence is (1, 1, –1, 
–1), and the origin distance sequence is (0, 0, 0, 0, 1). 

 

Fig. 3  Slip surface view of 3D geometrical model 
 in Example 1 

 
The normal and tangential stiffnesses are 1 000 

and 1 MPa/mm, respectively, and the friction angles 
are 33°, 35° and 37°, respectively. The critical angle 

ai is calculated by substituting SF  1 into Eq.(22), 
and then the active force direction at the critical state 
are derived using ai  and occurrence of the plane P0. 
The calculation results show that the safety factors of 
36 calculation schemes, including 6 models, 3 sets of 
friction angles and two overload base setting options 
(Tan and Scale), are all 1 (Fig. 4). 

 

 
Fig. 4  Compatibility validation for SF=1 

 
For SF  1, 3 algorithms, including the POLE 

method using Tan option, the POLE method using 
Scal option and Kovari formula, are compared. The 
friction angle is set to 35°, and the interpolation of 

ai is equidistant in the interval [0°, 90°] with a 
spacing of 10°. Models TB1 and TB6 are selected, 
and the calculation results are shown in Figs. 5 and 6. 
The curves of the POLE method using Tan option and 
the Kovari's formula are completely overlapped, 
which shows that it is fully compatible with the 
traditional double-face sliding algorithm.  

There are two intersections for the curve obtained 
from the POLE method using Scal option with the 
Kovari curves, SF  0 and SF  1 (Figs. 5 and 6). For 
0 SF  1, the POLES curve is slightly higher than 

the Kovari curve. For SF  1, the difference between 
the POLES curve and the Kovari curves is extremely 
significant. The safety factor of the POLES curve rises 
slowly as the dip angle of the angular edge decreases, 
and it is a constant when the dip angle of the angular 
edge is 0°. The safety factor of the Kovari curves rises 
rapidly as the dip angle of the angular edge decreases, 
and it is infinity for the dip angle of the angular edge 
decreases to 0°. 

The Kovari formula is meaningless in engineering 
practice when the angle of inclination of the angular 
edge is 0°. For example, for a block placed on a 
horizontal plane, the safety factor using Kovari 
formula is infinity. Interpreted by overload, the block 
cannot be moved, no matter how large the external 
disturbance is. Although this extreme case is rare, slow 
dip slip plane <20° is common in practical engineering, 
and instability also frequently occurs. Therefore, the 
Kovari formula overestimates the stability state of 
rock masses under slow dip conditions. Compared 
with the Kovari formula, the POLE method using Scal 
option is of clearer engineering significance. The 
block is in a state of limit equilibrium when the 
disturbed load reaches (SF  1) times the active force. 

 

 
Fig. 5  Compatibility validation for SF≠1 (TB1) 

 
 

 
Fig. 6  Compatibility validation for SF≠1 (TB6) 

 
3.2 Example 2 

The example 2 is a tunnel located in the Alicante 
marble mine in southern Spain [22]. The cross-section 
of the tunnel is square with dimensions of 4 m×4 m, 
and the tunnel length is 20 m. The tunnel axis is at a 
strike of 180° and an inclination of 0° to 15°, with 
the rock weight of 25 kN/m3. Menéndez-Díaz et al.[22] 
analyzed the block with the maximum volume within 
the cave roof, but the safety factor was not calculated. 
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Only the cave roof area was considered, and the planar 
occurrence and the strength parameters of discontinuities 
are listed in Table 2. 

 
Table 2  Parameters of the free face and the discontinuities[22] 

No. i 
Dip angle  

/(°) 

Direction of 
dip  
/(°) 

Friction 
angle 
/(°) 

Cohesion 
/kPa 

Tensile strength
/kPa 

S1  0   0 － － － 
J1 45 208 100 10 10 
J2 48 133  50 10  5 
J3 40  60  50 25  5 
J4 70 335 100 25 10 
J5 20 315  50 35  5 
J6 10 205 100 35 10 

 

According to block theory, a total of 111 finite 
movable blocks are identified, among which 20 are 
tetrahedra, 45 are pentahedra, 36 are hexahedra, and 
10 are heptahedra. Herein a heptahedron (No. B105) is 
selected for geometric modeling. The modeling 
parameters include: the sequence of plane numbers 
(S1, J3, J4, J5, J1, J2, J6), the sequence of half space 
sign (–1, 1, –1, 1, 1, 1, 1); the sequence of origin 
distances (0, 0, 0, 2, 3.04, 0.22, 1.52). The geometric 
model of the block is presented in Fig. 7. The normal 
and tangential stiffnesses of the structural plane are set 
to 1 000 and 1 MPa/mm, respectively. 

 
Fig. 7  3D geometrical model of Example 2  

 
The safety factors using the POLE method using 

Tan option and the POLE method using Scal option 
are 0.995 1 and 0.995 4, respectively, as only gravity 
is considered for active force and the motion mode is 
J4 single-face sliding. 

To verify the applicability of the POLE method for 
both embedded and lifting modes, the zenith angle 
along the direction of active force was interpolated at 
the interval of 2.5° within [0°, 180°]. The directional 
angle was set to 20°, and a total of 72 directions of 
active force were generated (Fig. 8). The block modes 
are embedded, J5J3 double-face sliding, J3 single-face 
sliding, lifting and J4 single-face sliding in order. 

Menéndez-Díaz et al.[22] provided 3 parameters of 
the non-simplified MC damage criterion. The strength 
parameters are considered in three cases. For case 
MC1, both tensile strength and cohesion are 0 with a 
single-parameter form. For case MC2, tensile strength 
is 0 with the two-parameter simplified form. For case 
MC3, three parameters are not 0 with the complete 
MC criterion. Since the Tan mode is discontinuous at 

the interface of embedded and double-face sliding 
modes, only the Scal mode is considered for the 
overload base. There are a total of 219 calculation 
schemes. 

 

 
Fig. 8  Cylindrical projection of the active force 

interpolation scheme 

 
The calculation results are displayed in Fig. 9. The 

quantitative stability analysis of the continuous 
transitions of the four modes in the full space along 
the active force direction were achieved using the 
POLE method. The motion modes experienced a total 
of 4 transitions. 

 

 
Fig. 9  Application verification of embedded 

 and lifting modes 
 

The first transition is from embedded mode to J5J3 
double-face sliding mode. This two modes have the 
same overload direction which is the angular edge 
vector intersected by J5 and J3. The variation of the 
safety factor is also characterized by a smooth transition. 

The second transition is from J5J3 double-face 
sliding to J3 single-face sliding. The transition of the 
safety factor under working condition MC1 is gradual, 
and the safety factor under working conditions MC2 
and MC3 drops rapidly, indicating the high sensitivity 
of tensile strength and cohesion to the safety factor 
within this interval. 

The third transition is a single-face sliding from J3 
to lifting. The variation of the safety factor under 
working conditions MC1 and MC3 is continuous 
overall, but the safety factor under working condition 
MC2 drops. At the boundary point, SF is 0 for 
working conditions MC1 and MC2. During the lifting 
mode interval, a transition occurs for the overload 
direction (with the zenith angle of 136.25°), from the 
projection vector of the active force on the J3 plane to 
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that on the J4 plane, and the safety factor at this 
transition point jumps. The safety factor is most 
sensitive to strength parameters under the lifting mode. 
It can be inferred that safety factor is sensitive to block 
morphology if the direction of active force remains 
unchanged. 

The fourth transition is a single-face sliding from 
lifting to J4. The change of safety factor is continuous 
until the active force direction is shifted to gravity 
direction (zenith angle is 180°). 

The major difference between the Tan and Scal 
setting options for the overload base lies at the 
boundary point of the embedded to J5J3 double-face 
sliding mode, where the angle between the angular 
edge vector and the active force is 90°. Under the 
circumstances, the safety factor of the Tan mode is 
infinite. From the viewpoint of mechanics, the safety 
factor of the embedded mode is larger than the 
counterpart of the double-face sliding mode, so the 
Tan option cannot be extended to the embedded mode. 
The Scal option narrows the value domain of safety 
factor for SF  1, thus making the quantitative 
stability analysis of the embedded mode feasible, 
which is one of the reasons for proposing the Scal 
setting method for overload base. 

4  Discussions 

Compared with the traditional algorithms, the 
stiffness parameter is added for the POLE method. 
There are two ways to obtain the stiffness parameter, 
i.e., experiments and empirical estimation. From the 
experimental viewpoint, the stiffness parameter test 
does not require a separate test, which can be obtained 
by monitoring the deformation data procedure during 
normal loading for the shear strength test of the 
structural plane. The test data processing can refer to 
that of elastic modulus. From the viewpoint of 
empirical data, the normal and the tangential stiffness 
intervals of the fracture is 110 to 1 690 MPa/mm and 
50 to 1 200 MPa/mm, respectively. Some scholars[23–25] 
reviewed the current research status of empirical 
models. 

In Sec. 3, the normal and tangential stiffnesses of 
the fracture are 1 000 and 1 MPa/mm, respectively, 
with the tangential to normal stiffness ratio (abbreviated 
as the stiffness ratio) of 0.001, which is significantly 
different from the empirical value of the Goodman 
unit. Therefore, two calculation schemes are designed 
based on the model condition of SF  1 of example 1 
to analyze the sensitivity of stiffness parameters to the 
POLE method using Tan option. In scheme 1 (S1), the 
stiffness ratio keeps constant at 0.001, and the normal 
stiffness is interpolated between 100 and 2 000 MPa/ 
mm with at an interval of 100 MPa/mm. In scheme 2 
(S2), the normal stiffness keeps constant at 1 000 
MPa/mm, and the stiffness ratio is interpolated 
between 10–5 and 100. The iterative accuracy of the 
critical overload factor is set to 10–8. 

 
Fig. 10  Sensitivity analysis of the stiffness ratio  

 
The results of S1 show that the safety factor is not 

affected by the normal stiffness under a constant 
stiffness ratio. The results of S2 (Fig. 10) show that the 
safety factor logarithmically decreases as the stiffness 
ratio increases, reaching the minimum value at the 
stiffness ratio of 1.The sensitivity of the stiffness ratio 
is related to the geometric model. When the stiffness 
ratio is 1, the effect on the TB1 model is minimal, with 
a reduction of safety factor by 0.001 8; and the effect 
on the TB6 model is maximal, with a reduction of 
safety factor by 0.028 4. As the stiffness ratio is 0.001, 
the difference between the safety factors by the POLE 
method using Tan option and by the Kovari formula is 
less than 10–5 orders of magnitude. To make the effect 
of stiffness parameters on the compatibility verification 
results less than 10–5 orders of magnitude, the normal 
and tangential stiffnesses of the fracture in Sec. 3 are  
1 000 and 1 MPa/mm, respectively. 

5  Conclusions 

(1) In this paper, a stability evaluation method for 
blocks of the rocky slope is improved, named as the 
POLE method. The improved method inherits the 
main features of the original method, and the main 
improvement is the quantitative description method of 
the reserve load. 

(2) The safety factor is defined using the overload 
reserve form. The overload base and the overload 
direction are introduced in the quantitative description 
of the reserve load. There are two setting options for 
the overload base, i.e., the Tan option and the Scal 
option. The overload direction is restrained on the 
boundary sector of the joint pyramid. Based on this 
restraint, the POLE method extends the applicability 
to the embedded and lifting modes. 

(3) the POLE method using Tan option is 
completely compatible with the traditional double-face 
sliding mode. the POLE method using Scal option 
redefines the value domain of the safety factor and has 
a clearer engineering meaning. 
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